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Abstract—As a type of advanced autonomous vehicle software,
platooning system-of-systems (SoS) has received tremendous
attention as a next-generation system. Platooning SoS can attain
several benefits, such as increasing fuel efficiency and alleviating
traffic congestion by grouping autonomous vehicles in close prox-
imity. Many studies have focused on analyzing the reliability of
platooning SoS, as it is a safety-critical system. However, existing
studies have two major limitations in their reliability analysis:
(1) the studies did not fully cover the internal uncertainties of
platooning SoS, such as heterogeneity; (2) they restricted external
uncertainties by limiting the test scenarios to a single platoon,
which could adversely affect the confidence of the analysis results.
In addition, there exists no common fault dataset for the analysis
of platooning SoS. Therefore, we provide an open dataset for
platooning SoS by considering internal and external uncertainty
factors during simulations. We empirically analyzed the execution
logs of random platooning SoS scenarios in terms of reliability.
We found 16 types of failure scenarios and root causes of the
failures, as a result of the empirical study. Further, we generated
the benchmark dataset, PLTBench, by classifying all failed logs
based on the detected failure cases. We provide all the artifacts
and descriptions in our benchmark web page as well as example
codes to utilize the PLTBench. The conclusions of this study can
enrich the general failure scenarios and experimental data set of
platooning SoS for future studies.

Index Terms—Autonomous vehicle system, Platooning System-
of-Systems, Cyber-Physical system, Empirical study, Simulation-
based Reliability analysis, Benchmark dataset

I. INTRODUCTION

Autonomous vehicle systems are indispensable when draw-

ing next-generation outlook, and they are expected to play a

major role in the next jump in transportation and accessibility.

According to this trend, numerous studies have focused on

developing advanced autonomous vehicle systems [1]–[5]

and verifying quality issues (e.g., reliability and safety) of

autonomous vehicles [6]–[10]. As a type of advanced au-

tonomous vehicle system, platooning system-of-systems (SoS)

has recently garnered considerable attention owing to various

environmental and business benefits, such as increasing fuel

efficiency and alleviating traffic congestion [11]–[14].

Platooning SoS which groups autonomous vehicles, as one

unit in close proximity, has a positive impact on the fuel

efficiency by aerodynamic benefits [15] and on the traffic con-

gestion and travel times by increasing the road capacity [12].

The concept of SoS is conventionally applied in platooning

systems [16]–[19] because a platoon consists of heterogeneous

a Example simulation of existing analysis studies on platooning SoS
[20]

b Example simulation of platooning SoS in this study

Fig. 1: Example simulations of platooning SoS in existing

studies and in this study

vehicles that have operational and managerial independence,

and the vehicles autonomously choose whether to join or leave

the platoon. The platooning SoS achieves the benefits by the

interactions of constituent vehicles based on the platooning

operations (e.g., Join, Leave, Merge, etc).

Even with these benefits, because the platooning SoS is

a kind of safety-critical system, it may have a huge ad-

verse effect on various users when the SoS fails. Therefore,

many studies have focused on analyzing the reliability of

the platooning systems. However, we found that the majority

of the existing studies focused on the reliability analysis of

platooning SoS: (1) did not fully consider the major char-

acteristics of the platooning SoS, such as heterogeneity and

operational/managerial independence of constituent vehicles;

(2) limited the testing and verification scenarios to a single

platoon scenario simulation. The limitations badly affect the

confidence of reliability analysis results on platooning SoS.

For instance, Elgharbawy [21], Kamali [20], and Meinke

et al. [22] verified the platooning management protocol by

simulating a single platoon consisting of homogeneous vehi-

cles. Fig. 1a depicts an example simulation scenario based
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on existing studies. A single platoon was generated in the

simulation, and the maintenance of the generated platoon

was checked. Despite that Kamali et al. [20] considered

the environmental human-driven vehicles (HDVs), which add

the external uncertainties in simulation, the existing studies

did not fully cover the internal and external uncertainties of

platooning SoS. Internal uncertainties (e.g., multiple platoon

interactions, heterogeneous vehicles, and different autonomous

driving policies) and external uncertainties (e.g., the existence

of HDVs that cannot communicate with platoon vehicles) need

to be considered in the analysis to increase the confidence in

the analysis results. Shin et al. [18] released a physical testbed

for platooning SoS and provided various goal properties.

Nevertheless, the testbed does not consider the heterogeneity

of vehicles and is limited to a single platoon scenario.

Additionally, there exists no common dataset of failures and

faults in platooning SoS. The existing studies generated the

experimental data by themselves based on different platooning

simulators. The absence of such a common experimental

dataset limits the quantitative performance evaluation of var-

ious research results in a unified experimental environment.

Therefore, an experimental dataset to be used for the reliability

analysis and verification of platooning SoS is needed.

To overcome the limitations, we propose empirical study

results for the reliability analysis of platooning SoS and release

an open benchmark dataset, PLTBench, including detailed

failure scenarios and a completely labeled set of logs. The

simulation logs analyzed in this study were generated by the

multi-platoon and heterogeneous autonomous driving policy

settings with environmental HDVs, as depicted in Fig. 1b.

The PLTBench contains the raw logs of the simulations and

categorization results of all failed logs by the failure scenarios,

with a detailed description of the root causes. The major

contributions of our study are as follows:

• We propose detailed results of the reliability analysis

for the open platooning simulator, including 16 types of

failure scenarios and their root causes.

• We provide an open benchmark dataset, PLTBench, con-

sisting of raw logs and categorization results of all failed

logs by the failure scenarios.

We generated 6,525 random platooning scenarios using

the StarPlateS framework, which provides useful modules

to utilize the open platooning simulator, VENTOS. In the

analysis, we verified the execution traces using two verification

properties related to reliability, operation success rate (OSR),

and collision existence (COLL). We found 10 types of failure

scenarios that violate the OSR property and 6 code-level

faults in VENTOS causing the failures, and 6 types of failure

scenarios with 7 root causes at VENTOS codes in the COLL
results. We manually classified all failed logs by the analyzed

16 failure classes and organized them as a benchmark dataset.

We also increased the accessibility of the dataset by providing

two example codes that utilize the dataset and their results. We

expect that the analysis results and PLTBench could be utilized

as generic failure scenarios and an experimental dataset in

Fig. 2: Example platooning operations in VENTOS

future studies targeting the platooning SoS.

The remainder of this paper is organized as follows. Section

2 explains the background. Section 3 describes the work

related to this study. Section 4 elucidates the results of the

empirical study on platooning SoS, and Section 5 presents the

procedures and composition of the benchmark dataset. Section

6 explains the example utilization of the benchmark dataset.

Finally, Section 7 discusses the implications of our findings

and concludes the paper.

II. BACKGROUND

A. VENTOS Platooning Simulator

VENTOS [23] is an open integrated transportation simu-

lator that consists of a network simulator, OMNET++ [24],

and a traffic simulator, SUMO [25]. It not only provides

general vehicle simulation modules but also contains a pla-

tooning management protocol to simulate platooning SoS.

The platooning management protocol in VENTOS provides

five platooning operations: Merge, Split, Leave, Speed
Change, and Optimal Size Change. Fig. 2 shows the

illustrative examples of the five platooning operations. By the

Merge operation, two platoons literally merge into one larger

platoon. Once the merge request is approved, the red leader

vehicle of the rear platoon becomes a follower in the front

platoon. The Split operation splits one platoon into two

smaller platoons when the leader of the platoon approves the

request from the follower. The Leave operation is activated

when a vehicle leaves the platoon after the platoon leader

approves its request. Finally, the Optimal Size Change
is performed when the platoon decides to change its platoon

size, and the Optimal Size Change operation can cause

a Merge or Split operation.

In this study, the open platooning management protocol

provided by VENTOS is a target system for the reliability

analysis. We utilized the StarPlateS framework to generate

scalable experimental data using the platooning protocol.

B. StarPlateS Framework

StarPlateS [17] is a statistical verification framework for

platooning SoS based on VENTOS simulator. It consists of

three modules: scenario generation, execution, and verification

modules. The scenario generation module generates random

configurations and scenarios, which are inputs for VENTOS

simulations, minimizing the number of scenarios that cause
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run-time failures. Next, the execution module runs the con-

figurations and scenarios on VENTOS simulator involving

environment human-driven vehicles (HDVs) in simulation.

The verification module checks the achievement rate of the

given goals by using a statistical model checking technique.

To efficiently generate and verify the simulation traces of

VENTOS platooning SoS protocol, we utilized the scenario

generation and execution modules in StarPlateS. We also used

the existing OSR property in the verification module and added

a new COLL property to verify the logs.

III. RELATED STUDIES

Numerous studies have been dedicated to the field of

platooning systems, whereas few studies proposed testbeds

for platooning SoS. Shin et al. [18] and Filho et al. [26]

recently presented physical platooning testbeds to support

the need for a physical experimental environment. Shin et

al. [18] provided an open physical exemplar for platooning

SoS, implementing platoon vehicles with LEGO robots. They

evaluated several SoS goal properties (e.g., collision avoidance

and road occupancy minimization) to demonstrate that vehicles

adapted their driving behaviors to meet platooning SoS goals.

The manuals of implementation, skeleton codes for LEGO

vehicles, and the experimental results are fully accessible.

Filho et al. [26] proposed a platooning robotic testbed with the

integration of on-board units (OBU) and the robotic operation

systems (ROS) on robotic vehicles. In their study, different co-

operative control algorithms can be implemented in a container

running on the ROS. In the experiments, they evaluated the

following behavior based on the differences in the trajectories

between a leader and followers. However, the accessibility of

the developed testbed and its experimental results are limited.

Although both studies considered the physical environmental

uncertainties, the environmental vehicles were absent in their

experiments. In addition, both testbeds are limited to a single

platoon scenario that does not support multi-platoon scenarios

and formed platoons with homogenous vehicles.

Several previous studies have been conducted on the relia-

bility analysis of platooning SoS to verify specific properties

of the platooning system through virtual simulation [20]–[22],

[27]. Kamali et al. [20] proposed a verification technique for

platooning systems by modularizing the system into an agent-

based architecture. An automotive simulator, called TORCS,

was utilized to implement the automotive environment; thus,

environmental vehicles were considered in the simulation.

They verified the spatial and real-time properties using the

UPPAAL model checker [28] by abstracting the agent pro-

grams, including leader and follower vehicles, into timed

automata. Vieira et al. [27] aimed at achieving platoon forma-

tions in more realistic scenarios and presented a platooning

simulation framework that integrates an ROS-based simulator,

Gazebo, with a network simulator, OMNET++. In this study,

the communication between platoon vehicles was tested by

providing different message sending frequencies to verify the

maintenance of a platoon, such as the following behavior.

Meinke [22] presented a case study of verifying the safety

properties of platooning SoS to investigate the scalability of a

learning-based testing technique. Meinke developed a JAVA-

based simulator that generates single-platoon scenarios with

different numbers of vehicles. This study focused solely on

the scenarios, in which the leader vehicle changed its speed,

thus the internal uncertainties of platooning SoS were partially

considered. Elgharbawy [21] proposed a testing framework

for an automated truck driving system to verify the safety

properties in various test environments. They defined scenarios

with different parameter settings for a vehicle and tested the

driving behavior in critical scenarios. They considered the

environmental perception errors in the system and defined

the failure rate of environmental sensing with a stochastic

property. However, this study does not empirically evaluate

the performance of the framework. All these studies [20]–

[22], [27] did not cover the heterogeneity of platoon vehicles,

and the scale of their verification results was limited to the

single platoon scenarios. Except for [20], these studies did

not consider the external uncertainties, such as the environ-

mental vehicles in simulation. Moreover, they generated the

simulation scenarios by themselves to verify the system, and

the experimental data were not fully released.

In contrast to the existing studies, our empirical study covers

both the internal and external uncertainties. First, the study

generated scenarios with various numbers of platoons. Diverse

types of vehicles and autonomous driving models were utilized

in this study. In addition, the stochastic environmental vehicles

are included in the simulated scenarios.

IV. EMPIRICAL ANALYSIS OF PLATOONING SOS

In this section, we describe the empirical analysis of the

platooning SoS protocol. After introducing the settings for the

empirical analysis, we present the analysis results in detail.

A. Empirical Study Design

The target software of this analysis is the platooning

management protocol provided by VENTOS. We utilized the

StarPlateS framework to efficiently generate random scenarios

for VENTOS execution and check whether the verification

property was achieved on the execution logs. The detailed

setup for the empirical study is presented in Table I. We

generated a total of 6,525 scenarios and execution traces for

the scenarios (42 GB). In each scenario, events representing

the execution of the platooning operation, such as Merge
or Leave were inserted at 20-second intervals. Thus, in

100 seconds simulation, at least five platooning operations

should be executed. For reliability evaluation factors, opera-
tion success rate (OSR) and collision existence (COLL) were

used. The OSR property is provided by the StarPlateS frame-

work, and this property is one of the conventional verification

properties for cloud systems [29]. The COLL property is newly

added to verify the existence of collisions in the simulation.

Originally, the VENTOS simulator had a collision-free option

in the simulation; thus, no collision occurred. We turned off

the collision-free setting by following the VENTOS manual

and added the collision detection module in StarPlateS. We
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TABLE I: Overall setups of the empirical study

Parameter Setting
Scenario setting

Number of generated scenarios 6,525 scenarios

Duration between events 20 logic seconds

Verification property

OSR threshold 0.8

COLL threshold 1

Simulation setting

Duration of a single simulation 100 logic seconds

Number of generated platoons 2−4 platoons

Size of each platoon 2−6 vehicles

Map An infinite length road with 3 lanes

Environmental objects
Human-Driven Vehicle (HDV)
generated every 5 seconds

Vehicle setting

Types of vehicles Passenger, Truck

Autonomous driving policy Krauss, ACC, CACC models

Hardware specification

CPU Intel i7-9700K CPU @3.60GHz

Memory 32GB

SSD Samsung SSD 860 Pro 500GB

Software specification

OS Ubuntu 16.04 64-bit

OMNET++ 5.4.1

JAVA version java 1.8.0

set the threshold values of 0.8 and 1 to distinguish success

from failure for the OSR and COLL properties, respectively.

A single simulation time was 100 logic seconds of the

simulator. It actually takes approximately 10 to 15 seconds

to execute in VENTOS. In each simulation, the number of

platoons was randomly selected, from 2 to 4, with a randomly

assigned size of 2 to 6. The simulation map is assigned by an

infinite length of road with three lanes. The starting lanes of

the platoons were randomly selected. In addition, to cover en-

vironmental uncertainties in the reliability analysis, we added

human-driven vehicles (HDVs) that cannot communicate with

platoon vehicles and randomly change the speed and lanes in

the simulation. The HDVs are generated every 5 seconds; thus,

approximately 20 HDVs are generated in a single simulation.

To cover the diversity and heterogeneity of platooning SoS,

we added two types of vehicles, passenger and trucks, as pla-

tooning vehicles and HDVs. Every vehicle had an autonomous

driving model out of the Krauss, adaptive cruise control

(ACC), and cooperative ACC (CACC) models provided by

SUMO1. In the simulation, platooning vehicles use the CACC

model as the default option. However, in specific cases, such as

persistent communication failures or a sudden loss of leaders

by collision, the driving policy of the platooning vehicles is

changed to the ACC or the Krauss model.

The hardware and software specifications for the empirical

study are also described in Table I. We followed the default set-

tings of the VENTOS installation: Ubuntu 16.04, OMNET++

5.4.1, and Java 1.8.0. In the next section, we elucidate the

empirical analysis results based on these settings.

1https://sumo.dlr.de/docs/

Fig. 3: Illustrative example of executions of failure class 2 in

OSR analysis

B. Operational Success Rate Analysis

Based on the settings described in the previous section,

we investigated the failed execution logs using the OSR
property. We found ten failure situations that always violate

the OSR property. Table II elucidates the detailed fault analysis

results for each situation, which are organized as failure

classes. The failure scenarios for each class are described

by the context, triggering event of errors, and symptoms.

Furthermore, the failures are categorized into four types:

Incorrect logic; Missing logic; Non-occurrence of expected

events on expected time; and Communication concurrency

error by their root causes and execution context. Based on the

existing categorization taxonomy of interaction failures among

humans and robots [30], we added new classifications, like

Communication concurrency errors or Cascading failure, and

applied them in the analysis. For example, the failure classes

5, 6, and 10 are caused by the “MergeRequestAttempt bug”,

which is an incorrect logic applied during the MERGE_REQ
process. Similarly, failure classes 7 and 8 were caused by

the missing logic of specific protocol execution, such as

LeaderLeave and MiddleFollowerLeave operations.

Class 9 denotes that during the MiddleFollowerLeave
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TABLE II: Empirical analysis results on OSR verification property

Class ID Failure scenario Faults in code Lines in code
05 PlatoonMg.ccName Context Triggering event Symptoms Categorization

Class 1
Simultaneous

Merge & Merge During the Merge operation

The rear platoon leader requests
Merge by OptSize policy to the
same leader who simultaneously
requests Merge operation.

Constantly requests Merge
to the original leader

Communication concurrency error
- BusyReplying bug OR
- MERGE REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 2
Simultaneous
Split & Merge During the Split operation

The rear platoon leader requests
Merge by OptSize policy to the
same leader who simultaneously
requests Split operation.

Constantly requests Merge
to the original leader

Communication concurrency error
- BusyReplying bug OR
- MERGE REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 3
Simultaneous

LeaderLeave & Merge
During the Leader
Leave operation

The rear platoon leader requests
Merge by OptSize policy to the
same leader who simultaneously
requests LeaderLeave operation.

Constantly requests Merge
to the original leader

Communication concurrency error
- BusyReplying bug OR
- MERGE REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 4
Simultaneous

FollowerLeave & Merge
During the Follower

Leave operation

The rear platoon leader requests
Merge by OptSize policy to the
same leader who simultaneously
requests FollowerLeave operation.

Constantly requests Merge
to the original leader

Communication concurrency error
- BusyReplying bug OR
- MERGE REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 5 Split Optsize During the Split operation
The rear platoon leader requests
Merge to the newly split platoon
by OptSize policy

Constantly requests Merge
to the newly split platoon leader

Incorrect logic
- BusyReplying bug OR
- MERGE REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 6
LeaderLeave

Optsize 1
During the Leader
Leave operation

The rear platoon leader requests
Merge to the new platoon leader
by OptSize policy

Constantly requests Merge
to the new leader

Incorrect logic
- BusyReplying bug OR
- MERGE REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 7
LeaderLeave

Optsize 2
During the Leader
Leave operation

The new platoon leader requests
Merge to the left leader by
OptSize policy

Constantly requests Merge
to the left leader

Missing logic
- ChangeVehStateLastly bug OR
- LeavedVehList bug

- 1397∼1424
- 726∼745

Class 8
MiddleFollower
Leave Optsize 1

During the Middle Follower
Leave operation

The intermediate platoon leader
requests Merge to the left vehicle
by OptSize policy

Constantly requests Merge
to the left leader

Missing logic
- FollowerLeaveProtocol bug OR
- LeavedVehList bug

- 1764∼1798
- 726∼745

Class 9
MiddleFollower
Leave Optsize 2

During the Middle Follower
Leave operation

The rear platoon leader requests
Merge to the intermediate leader
by OptSize policy

Constantly requests Merge
to the intermediate leader

Non-occurrence of expected events
on expected time

- FollowerLeaveProtocol bug AND
- LeaveSplitCaller bug

- 1780∼1796

Class 10
EndFollower

Leave Optsize
During the Split operation in the

End Follower Leave operation

The rear platoon leader requests
Merge to the left vehicle
by OptSize policy

Constantly requests Merge
to the left leader

Incorrect logic
- BusyReplying bug OR
- MERGE REQUEST attempt bug

- 609∼636
- 729 ∼744

operation, certain events were not correctly executed in a spe-

cific condition. Finally, classes 1 to 4 explains the concurrency

failure cases, where a platoon leader requests operations, such

as LeaderLeave or Merge, and is also requested to Merge
by the other platoon leader simultaneously.

Fig. 3 illustrates the execution of failure class 2, which is a

simultaneous Split and Merge. When a platoon follower,

V2, requests Split to V1, the other platoon leader behind the

platoon, V5, could simultaneously request Merge operation

to V1. In the VENTOS protocol, the Merge request delivered

during the Split execution, is ignored or rejected. However,

even after the Split operation is completed, we observed

that the rear platoon leader, V5, continuously requests Merge
to the same vehicle, V1. This failure situation adversely affects

the operation of the related platoon vehicles, V1 and V5, and

may cause overall operation delays or execution failures.

The seventh and eighth columns of Table II describe

the corresponding faults and their locations. For example,

“MERGE_REQUEST attempt bug” is one where the “Merg-

eRequestAttempts” value is changed to the initial value after

the three times requests, but the sender vehicle continuously

requests Merge. To resolve the bug, the additional data

variable is necessary to check the busy vehicles. The bug is

located in the code blocks of 05 platoonMg.cc file in lines

729-744. The OR symbol in the seventh column denotes that,

if one of the faults is fixed, the failure is resolved. The AND
symbol indicates that both of the faults must be fixed to resolve

the failure. The faults identified in this study are mostly due to

the absence of several statements, which are missing logic or

incorrect logic flows for unexpected situations and interactions

in the protocol. This implies that most solutions for the bugs

include adding new conditional code blocks followed by the

improvement of the protocol model design. On the web page of

the PLTBench2, we provided detailed information for all code-

level faults and their occurrence patterns with more various

illustrative examples.

C. Collision Analysis
Similar to the OSR property-based analysis, we conducted

a detailed analysis on failure cases that violated the COLL
property. Table III describes the failure scenarios, code-level

faults, and categorization of the root causes. We focused on

the six types of failure classes that were caused by platooning

operations. There are more types of failure scenarios that

cause collisions in Table V. However, we conducted the

analysis focusing on failure scenarios that have the root

causes inside the platooning system. First, we confirmed that

collisions could be caused by all platooning operations that

are executable in the VENTOS simulator. The root cause of

collisions in the majority of detected failure classes was that

the platooning operation logic did not consider the presence of

environmental vehicles (i.e., HDVs) or other platoon vehicles

in the rear. Therefore, most of the root causes of detected

collisions are the omission of the logic that considers the

distance from the rear vehicle in each operation. In the case

of SpeedChange operation, there is no code of function call

in the 05 platoonMg.cc file, but in the other code section.

Similarly, in order to solve the majority of the root causes

found above, specific codes must be newly added.
Fig. 4 depicts one of the interesting failure scenarios de-

tected in the collision analysis. The illustrated failure case

belongs to failure class six in Table III and is a type of com-

prehensive and cascading failure scenario. First, in a situation

where three platoons, V1, V2, and V5, request simultaneous

Merge to the front leader, illustrated in 1) in Fig. 4, the inter-

platoon distance between V1 and V2 is reduced to perform

2https://sites.google.com/se.kaist.ac.kr/pltbench/
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TABLE III: Empirical analysis results on COLL verification property

Class ID Failure scenario Faults in code Lines in code
05 PlatoonMg.ccName Context Triggering event Symptoms Categorization

Class 1 Split During the Split operation
The split operation from the platoon
results the platoon vehicles to
increase the front distance.

Collision occurred Missing logic
- Missing distance checking
during Split

- 1381 ∼ 1393

Class 2 LeaderLeave During the Leader
Leave operation

The leave operation from the platoon
results the platoon vehicles to
increase the front distance.

Collision occurred Missing logic
- Missing distance checking
during LeaderLeave

- 1581 ∼ 1596

Class 3 MiddleFollowerLeave During the Middle Follower
Leave operation

The leave operation from the middle
of the platoon results in a split
operation.

Collision occurred Missing logic
- Missing distance checking
during MiddleFollowerLeave

- 1738 ∼ 1749
- 1764 ∼ 1777

Class 4 EndFollowerLeave During the End Follower
Leave operation

The end vehicle prepares to leave
the platoon by increasing the
front distance.

Collision occurred Missing logic
- Missing distance checking
during EndFollowerLeave

- 1738 ∼ 1749
- 1751 ∼ 1763

Class 5 SpeedChange During the Speed
Change operation

The vehicle changes its speed Collision occurred Missing logic
- Missing distance checking
during SpeedChange

in vehicle driving setting code

Class 6 Merge During the Merge operation
The merge operation is unsuccessful
resulting in increasing the
front distance.

Collision occurred
Missing logic

Cascading failure

- Missing distance checking
during Merge
- BusyReplying bug OR
- MERGE REQUEST attempt bug

- 727 ∼745

the Merge operations, as illustrated in 2). However, owing

to the simultaneous requests of the Merge operations, V2

is overloaded and the Merge with V1, which is already in

progress, eventually fails. Due to the failure of the progressing

Merge operation, V2 needs to increase the inter-platoon

distance to the original distance. Inevitably, in this process, the

V5 also slows down to maintain the inter-platoon distance with

V2, and V5 collides with the rear environmental vehicle in the

end. In this manner, failure situations in platooning SoS occur

during concurrent and intricate interactions; thus analyzing the

failures is a highly time-consuming task. We generated the

benchmark dataset based on the detailed analysis results.

V. BENCHMARK DATASET: PLTBENCH

In this section, we explain the detailed procedure for gen-

erating a benchmark dataset and elucidate the components of

the PLTBench in several aspects.

A. Benchmark Generation Procedure

Fig. 5 depicts the overall procedure for generating the

benchmark dataset. We performed two full examinations of

all failed logs. The goal of the first examination is to estab-

lish the fault knowledge base for the failures that occurred

in platooning SoS. The results of the first examination are

described in Section IV. We specified the failure scenarios in

the form of the context, triggering events, and symptoms. We

further analyzed the root causes and failure patterns of each

failure class. By generating the fault knowledge base including

the aforementioned information, the basis for generating a

benchmark dataset was completed.

Using the fault knowledge base, we performed a labeling

procedure for all failed logs in the second examination phase.

First, we labeled the failed logs by checking whether the

occurrence patterns for each failure class are detected. Then,

we executed the failed scenarios again and confirmed that the

labels were correctly assigned to the failure executions in the

GUI simulation. We performed the classification based on the

analysis results for OSR and COLL, respectively.

Subsequently, we analyzed and improved the quality of

the generated dataset. We analyzed the data set on three

aspects: Correctness, Availability, and Balance. To check the

correctness of the data set, we assigned the failed logs to the

Fig. 4: Illustrative example of executions of failure class 6 in

COLL
project members and cross-checked the labeling result so that

every failed log could be checked by at least two people. To

increase the availability of the dataset, we implemented a web

page for the accessible utilization of the benchmark dataset.

Finally, we investigated the balance of the dataset, which

checks whether the distribution of data was not too skewed.

The details of the composition of the benchmark dataset are

described in the next section.

B. PLTBench Composition

The benchmark dataset is mainly composed of raw logs

with scenarios, analysis results, and classification results with

statistics. The whole benchmark dataset including the analysis

and classification results can be found on our web page. As

it is described, the raw logs are approximately 42 GB of sim-

ulation execution traces, and consist of vehicle location data,

emission data, platooning configuration data, and platooning

communication data. Each datapoint was stored in units of

0.5 milliseconds. Additionally, we gathered console messages

from VENTOS simulator for each simulation and saved them.

The console logs contain information on the state changes of

platooning vehicles and collision messages. To provide the
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Fig. 5: Overall process of generating the benchmark dataset

for platooning SoS

reproducibility of the generated logs, we also added the sce-

narios and configurations of the logs in the dataset. The initial

vehicle configurations and scenarios with platooning operation

execution at specific times were included. Therefore, users can

reproduce the execution traces or check the simulation in GUI

by using the scenarios and configurations.

C. Statistics of the Dataset

In addition to the detailed empirical analysis results for

the reliability properties described in Section IV, we provide

failure scenario classification results and statistics for all failed

logs. The classification results for failure scenarios that violate

the OSR property are listed in Table IV. We found 3,256

numbers of failed logs and 3,830 cases of failure executions.

The difference between the total number of failed logs and

the number of actual detected failure classes appears because

multiple failure scenarios occur simultaneously in a single log.

On average, it was confirmed that 1.17 failure classes were

found in one log.

TABLE IV: OSR analysis statistics

Class ID Counts
Class 1 (Simultaneous Merge & Merge) 213
Class 2 (Simultaneous Split & Merge) 62
Class 3 (Simultaneous LeaderLeave & Merge) 133
Class 4 (Simultaneous FollowerLeave & Merge) 138
Class 5 (Split optsize) 794
Class 6 (LeaderLeave optsize 1) 159
Class 7 (LeaderLeave optsize 2) 579
Class 8 (MiddleFollowerLeave optsize 1) 389
Class 9 (MiddleFollowerLeave optsize 2) 1104
Class 10 (EndFollowerLeave optsize) 259
Total 3830

TABLE V: COLL analysis statistics

Class ID Env Env Plt Plt Plt Env Sum
By Env 521 9 218 748
By Plt Op 29 – 172 201
- Class 1 (Split) 11 – 78 89
- Class 2 (LeaderLeave) 6 – 18 24

-
Class 3
(MiddleFollowerLeave)

3 – 26 29

-
Class 4
(EndFollowerLeave)

1 – 25 26

- Class 5 (SpeedChange) 8 – 23 31
- Class 6 (Merge) 0 – 2 2
Unknown 4 – 12 16
Total 554 9 402 965

It is also observed that the data distribution is affected

according to the failure classes. Generally, the simultaneous

failure classes were smaller than the other classes. This trend

is caused by the generation of random scenarios. Scenarios

in which specific operations are executed simultaneously are

less likely to be randomly generated than scenarios that do not

involve simultaneous operation executions. Therefore, differ-

ences in distribution are inevitable because of the difficulties

in generating edge cases in the process of generating random

scenarios. From the viewpoint of data balancing, uniformly

distributed data is not always the best option for a dataset [31].

In the credit card defrauded dataset, only 3.9% of the data

are related to the fraud [32], and only 0.4% is positive

in the HIV prevalence data set [31]. Nevertheless, we plan

to generate more scenarios involving simultaneous operation

execution. We will use a guided method by modifying the

random scenario generation module in StarPlateS and provide

more numbers of the failure executions corresponding to the

simultaneous operation executions.

Table V describes the statistics of the classification results

by the failure classes that violate the COLL property. We

conducted the classification process according to the collision

subjects: “Env vehicle (i.e., HDV) with Plt vehicle”, “Env

vehicle with Env vehicle”, and “Plt vehicle with Plt vehi-

cle” and to the cause of collisions: “by Env vehicle”, “By
Plt Operations(e.g., Merge, MiddleFollowerLeave), and

“by unknown”. The simultaneous occurrence of multiple

failure classes showed a similar trend in collision failures.

We identified 965 failure cases among the 900 failed logs.

However, we found that the logs having multiple failure cases
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contain more numbers of failure cases at once. For instance,

the maximum number of multiple failure cases in a single

failed log is six in the COLL analysis result.

The failure cases we mainly focus on are collisions caused

by platooning operations (By Plt Op) or collisions involving

platoon vehicles (Plt Plt and Plt Env). All collision cases

among platoon vehicles (Plt Plt) are caused by HDVs, which

suddenly change their speed or driving lanes just in front of

truck platoon vehicles. Most crashes caused by environmental

HDVs (By Env) have similar failure scenarios to sudden lane

change and speed change. In the collision cases caused by

the platooning operations (By Plt Op), we found 172 cases in

total. The most common case is by Split operation. This is

because the Split operation is called during the execution

of all Leave operations. The collision scenarios are described

in detail in Section IV-C.

The Unknown cases are the scenarios that are difficult to

reproduce or the cases in which the causes of the collisions

are unclear by checking the simulation. For instance, one

example of an Unknown case is a situation in which an HDV

increases the distance to its rear vehicle corresponding to a

platoon vehicle in the process of Split in the other lane. To

analyze the unknown cases, we plan to perform the deep code-

level analysis for all simulator codes, as well as the platooning

protocol codes in VENTOS.

D. PLTBench Web Page

Fig. 6 depicts the example contents on our web page.

We established a web page for PLTBench to maximize the

accessibility and availability of the dataset for users. All data

and descriptions related to the PLTBench are listed on the web

page. Users can easily download the raw logs and classification

results based on failure classes. If users want to reproduce the

failed execution logs, they can execute the provided scenarios

in VENTOS and check the results by the simulation. Fig. 6a

shows the basic introduction of PLTBench and the description

of raw logs and scenarios with the download link. Fig. 6b

illustrates the detailed empirical analysis results on the web

page. The classification results of the COLL failure classes

are shown in Fig. 6c. Finally, examples of ways to utilize the

PLTBench were elucidated, as shown in Fig. 6d. The details

of the example uses of the benchmark dataset are explained

in the next section.

VI. APPLICATION EXAMPLES OF BENCHMARK DATASET

Herein, we introduce two experiments that used the PLT-

Bench dataset. The first experiment evaluated the performance

of a neural network-based fault diagnosis technique for pla-

tooning SoS failures. The second result depicts the precision

of clustering results, where the clustering technique aims to

extract failure patterns from logs and to help to establish fault

knowledge of the target system.

A. Log-Based Fault Diagnosis Techniques

Safety-critical systems or social infrastructure systems re-

quire immediate responses when failures occur. One of the

a Basic description and download link of the raw logs

b Detailed analysis result and the classification file link

c An example of classification result by COLL property

d Example description of utilizing the benchmark data set

Fig. 6: Example arrangement at the actual benchmark web

page
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TABLE VI: Evaluation results of the fault diagnosis technique

on the PLTBench data set

Evaluation method Avg. of best accuracies Total best accuracy
six-fold cross-validation 0.9806 0.9962

effective ways of the immediate responses is to find the most

similar (or the identical) failure scenarios in the existing fault

knowledge base. Based on the most similar fault knowledge,

including the root causes, failure patterns, and possible solu-

tions, system managers could efficiently resolve the failures

that occurred. Table VI describes the evaluation results of

the neural network-based fault diagnosis technique. We built

a three-layered neural network and added a pre-processing

module for the platooning SoS logs. We performed a six-

fold cross-validation on the technique. The technique achieved

0.9806 for the average of the best accuracy values in each

fold and 0.9962 for the total best accuracy value. Detailed

codes and evaluation metrics are provided on the PLTBench

web page, as shown in Fig. 6d. Using this PLTBench dataset,

we showed that it is possible to evaluate and analyze the

performance of a log-based fault diagnosis approach.

B. Log-Based Faulty Pattern Mining Techniques

Several fault analysis techniques, such as fault diagnosis

techniques, require a detailed fault knowledge base of the

target system [29], [33], [34] for using the techniques. This

implies that several fault analysis or detection techniques need

fault data, failure scenarios, or patterns that have already

been analyzed and classified. However, generating such a

fault knowledge base requires considerable effort. Log-based

clustering technique could provide the basis for generating

a fault knowledge base by mining common failure patterns.

Because the PLTBench provides a completely labeled dataset

for the failures in platooning SoS, the dataset could be utilized

to evaluate such unsupervised clustering techniques.

We evaluated two log-based clustering techniques and the

F1P evaluation metric for overlapping clustering evaluation,

which are open to the StarPlateS repository3. Fig. 7 illus-

trates the evaluation results of two log-based failure scenario

clustering techniques: 0.557 value for Base LCS and 0.796

value for TIME LCS. Here, LCS denotes the longest common

subsequence. The goal of the two techniques is to mine

accurate failure patterns by clustering similar failed logs. In

this evaluation process, we utilized the classification results of

failed logs that violate the OSR property. This evaluation can

be performed only when the completely labeled failed logs are

provided. Through the PLTBench dataset, we carried out the

precision comparison of the two clustering techniques.

VII. CONCLUSION

We presented an open benchmark dataset for platooning

SoS, PLTBench, which covers internal and external uncer-

tainty factors by generating heterogeneous types of platoon

3https://github.com/KAIST-SE-Lab/StarPlateS

Fig. 7: F1P evaluation results of log-based clustering tech-

niques: Base LCS and TIME LCS

vehicles and human-driven environmental vehicles in simula-

tions. Existing testing or verification techniques did not fully

cover the uncertainty factors during the testing or verification

process and were limited to a single and homogeneous platoon

simulation, without environmental objects. We addressed the

limitations and proposed a PLTBench dataset consisting of 42

GB of raw simulation logs and scenarios, detailed empirical

analysis results on failures and faults based on the two

reliability attributes, classification results of all failed logs by

the analyzed failures, and example utilization of the dataset.

We also built a web page to increase the accessibility of the

artifacts and descriptions for the dataset. We expect that the

PLTBench dataset could enrich the typical failure scenarios

and experimental data set for future studies targeting the

platooning SoS.
We plan to improve the benchmark dataset in two ways.

First is by providing solution codes for the detected faults in

the VENTOS platooning protocol codes. We sent the detected

faults and possible solutions to the managers of VENTOS, but

did not get a response yet. If the owners of VENTOS agree

on the patches, we can directly add the solutions to our web

page. We expect that the patch codes can be utilized in diverse

research studies. Further, we plan to generate more scenarios

for simultaneous operation execution classes to improve the

balance of the distribution of the dataset.
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