
Statistical Verification Framework for Platooning
Systems of Systems with Uncertainty

Sangwon Hyun, Jiyoung Song, Seungchyul Shin, and Doo-Hwan Bae
School of Computing

Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, South Korea

{swhyun, jysong, scshin, bae}@se.kaist.ac.kr

Abstract—Platooning system is a well-known technology for
alleviating traffic congestion and increasing fuel efficiency by
grouping vehicles. It has the major characteristics of Systems
of Systems (SoS), such as uncertainty. Several internal and
external factors of uncertainty exist in the platooning system,
such as car accidents, network disconnections, and simultaneous
requests from other platoons. These factors make it difficult to
guarantee that the system operates correctly in unpredictable
scenarios and environments. The existing techniques used to
verify the platooning system have two limitations: 1) the lack
of consideration of uncertainty in scenarios and environments;
2) the application of exhaustive verification techniques which
are vulnerable to the state-explosion problem. Thus, we suggest
a statistical verification framework for a platooning SoS to
address the above two limitations. The proposed framework
automatically generates platooning configurations and scenarios
considering the internal and external uncertain factors and
bypass the state-explosion problem using a statistical verification
technique. In this study, experimental results showed that the
proposed approach generates 50% more valid scenarios than
purely random strategy. In addition, we found two types of
undiscovered failures and their causes in the VENTOS platooning
system. These results indicate that our approaches enable the
deep analysis of the platooning management system.

Keywords—Platooning System of Systems, System Uncertainty,
Statistical Verification

I. INTRODUCTION

As network technology advances and systems have become
larger and more complex, the interest in System of Systems
(SoS) such as smart transportation, smart home, and smart
plant systems has increased. The System of Systems (SoS)
is a system in which the heterogeneous Constituent Systems
(CS) cooperate to achieve a common goal through syner-
gism [1]. When analyzing the behavior of an SoS, it makes
the analysis difficult that the SoS dynamically reconfigures
its structure or strategies in response to uncertainties within
or outside the system. The unexpected changes within the
SoS such as adding, removing, and modifying CSs, cause
the internal uncertainty of the system. In addition, changes
in the environment cause the external uncertainty of the SoS,
such as network disconnections, and unexpected behavior of
environmental objects [2], [3].

The platooning system, which is an representative exam-
ple of an SoS, has recently gained attention because it is
considered a fuel-efficient strategy for alleviating the traffic
congestion of driving vehicles. The platooning system groups

Fig. 1. An example platooning scenario execution in VENTOS.

vehicles and drives them with narrow intervals as depicted
in Fig. 1. In the Fig. 1, there are two platoons in lane 1
and one platoon in lane2. The platoon 1, 2, and 3 consist
of three, two, and three vehicles, respectively. Vehicles with
the ids 1, 4, and 5 are the leaders of the platoons and
they decide the driving strategies in each group. The leaders
and followers in the platoons communicate by the Vehicular
Adhoc Network (VANET) [4] to request operations such as
Merge and Split. There exist several uncertain factors within
or around the platooning system, because of its complexity
and constantly changing environment. The internal uncertainty
of the platooning system occurs in a sequence of platooning
system operation such as simultaneous Merge, Split requests
from other platoons or constituent vehicles. The external un-
certainty occurs in the environment surrounding the platooning
system, such as vehicle accidents, network disconnections, and
unexpected lane change of Human-Driven Vehicles (HDV).
To deal with these uncertainties of the platooning system, it is
necessary to verify the system with considering the uncertainty
factors in the verification process.

The verification of a platooning SoS currently relies on
simulating few specific scenarios that are generated manually.
Much time and effort are required to analyze the vehicle
operation data to generate realistic scenarios [3]. Moreover, the
generated scenarios do not address sufficient uncertain factors
that can occur in the platooning system. Meinke et al. [5],
for example, verified a platooning system with generating
scenarios, but only use a single Speedchange event. Kamaili
et al. [6] simulated a platooning protocol on a spacing and
timing constraint without considering external environments
like HDVs. In addition, most of the studies verified a pla-
tooning system by applying exhaustive approaches which
are vulnerable to the state-explosion problem. This problem
negatively affects to address uncertain factors of the platooning



system by limiting the scalability of the verified system. For
instance, Elgharbawy et al. [7] exhaustively check all traces
of the automated truck driving system, but it only simulates
a single vehicle in the verification. Therefore, to verify the
platooning SoS, we need to consider the internal and external
uncertainties of the system and bypass the state-explosion
problem.

We suggest a StarPlateS, which is a statistical verification
framework for a platooning SoS that effectively deals with
the uncertainty issues in the system. We extend a VENTOS
simulator [4] by implementing a scenario generation module,
simulation module, and verification module. The scenario
generation module addresses internal uncertain factors of the
system by generating random configurations and scenarios.
We suggest a condition-based scenario generation approach
to minimize the number of invalid and meaningless scenarios.
Then the simulation module executes the system with stochas-
tic environmental objects. We add heterogeneous HDVs in
the simulation to cover the external uncertain factors of the
system. Finally, the verification module applies a statistical
model checking technique to verify the system and to alleviate
the state-explosion problem.

In experiments, we first checked the feasibility of the
scenario generation algorithm by comparing it with a purely
random strategy. The result showed that the suggested ap-
proach generated more than 50% of valid scenarios instead of
the purely random generation strategy. Next, we verified the
platooning management system in 20 cases of configurations
and scenarios. In the verification of average speed mainte-
nance, we found that a deficiency of Lanechange operation
negatively affected the maintenance of the speed in the system.
In addition, we found a “busy-leader” scenario pattern that
always causes the rejection of the Merge operation.

This paper is organized as follows. Section 2 explains the
background. Section 3 elucidates the main features of the
framework, and Section 4 describes implementation details.
Section 5 presents the experimental results of this framework.
Section 6 describes the related works of this research. Section
7 discusses the implications of our findings, recommends
directions for future work, and concludes the paper.

II. BACKGROUND

A. Platooning as an SoS

The platooning system has been studied to increase the
capacity of roads [4], [8]. The system is used to group vehicles
into platoons with a common purpose. The head of the platoon
becomes the leader, and the other members of the platoon
become the followers. The platooning system is based on the
Cooperative- Adaptive Cruise Control (C-ACC) technique, and
it enables that vehicles in a platoon actively communicate
with other vehicles to make synergism in their cooperation.
For example, it enhances the fuel economy of the vehicles by
reducing air resistance. Narrow intervals between the vehicles
reduce the total amount of air resistance acting on the entire
platoon. These intervals also have positive side effects, such as
reducing traffic congestion and the number of traffic collisions.

A platoon has representative five characteristics of SoS:
Autonomy, Belonging, Connectivity, Diversity, Emergence [1].
First, the vehicles in a platoon have the Autonomy to decide
whether to join a new platoon, or leave current platoon for
its own purpose. Second, vehicles Belong to a platoon to
achieve specific goals, such as gaining economic advantages.
Next, vehicles in a platoon are Connected. Not only does
every vehicle inside a platoon communicate but also platoons
communicate with each other. They maintain inter-platoon and
intra-platoon spaces by continuously communicating. Fourth,
the vehicles in a platoon are Diverse because they include
heterogeneous types, such as trucks and passenger vehicles
with two types of roles: a leader and followers in a platoon.
The last characteristic is Emergence. The cumulative actions
and interactions of vehicles and platoons result in achieving
common goals such as the reduction of traffic congestion.

In this work, we use a notable and open traffic simulator,
VENTOS, which provides a platooning management system
with the five characteristics of an SoS. The VENTOS consists
of the OMNET++ network simulator [9] and the SUMO traffic
simulator [10]. The VENTOS provides a platooning man-
agement system with hierarchical operation protocols which
contains Merge, Split, and Leave operations [4]. The Merge
operation is conducted when the leader in the front platoon
approves a request from the leader in the back platoon. In the
Split operation, after a follower in a platoon requests a Split
from a platoon leader, if the leader approves it, the platoon is
divided into two platoons. In the Leave operation, a vehicle
leaves a platoon after approval by the platoon leader.

B. Statistical model checking

To determine whether the system satisfies the properties, the
Statistical Model Checking (SMC) technique is used to simu-
late and monitor the system. It is based on a hypothesis testing
to provide statistical evidence for judging the property [11].
Because SMC is less intensive in time and memory than
exhaustive approach, it is used to verify large and complex
systems [12]. When the verification property φ, the system
and environment model M and E are used to perform SMC,
the probability Pr(M,E =⇒ φ) is calculated statistically.

The satisfaction of simulation execution trace σ in ver-
ification property φ is checked by the verification module
in the proposed framework, which can handle Probabilistic
Computational Tree Logic (PCTL) properties. An example
of a PCTL property is as follows: “P =? [trueU <=
100(num vehicle platoon A) > 5]”. This example could
be used in the platooning system scenario, where it checks
whether the number of vehicles in the platoon A is more than
five within 100 seconds in each trace. Then the verification
module returns the result of the trace (σ � φ).

In this framework, the verification module calculates the
number of traces that are statistically sufficient for a reliable
verification result using the Sequential Probability Ratio Test
(SPRT) algorithm. To bound the error probability of the prob-
abilistic result, false positive probability α and false negative
probability β are used as two precision parameters [13].



Fig. 2. Overall architecture of the verification framework.

III. STATISTICAL VERIFICATION FRAMEWORK OF
PLATOONING SOS: STARPLATES

In this section, we explain the main features of this frame-
work. Fig. 2 shows the architecture of the framework which
is composed of the scenario generation module, simulation
module, and verification module. The proposed framework,
StarPlateS operates as follows. First, the scenario module
generates random configurations and scenarios of the platoon-
ing SoS using condition-based approach. Then, the simula-
tion module executes the system on the generated scenarios
with stochastic environment. Finally, the verification module
applies a statistical model checking technique, especially the
SPRT, and returns the verification results for each configura-
tion and scenario. The following parts detail each component
of the framework in sequence.

A. Simulation settings

There are several options for executing a simulation: simula-
tion time, repetition numbers, verification options, duration be-
tween events, and GUI. We define these options as simulation
settings. There are two modes of simulation settings according
to the use of the StarPlateS framework. First, users can use
our framework in ‘verification mode’. In this mode, users set
high repetition numbers, such as 1,000, and the verification
option that is true for statistical verification. Another way of
finding configurations and scenarios with specific purpose is
called the ‘single simulation mode’. In this mode, users assign
the repetition number as 1 and set the verification option at
false; thus, the framework generates as many scenarios as
possible in the given amount of time. For example, we use the
single simulation mode to compare two scenario generation
approaches and the verification mode to conduct statistical
model checking. The simulation settings are utilized in the
scenario generation module and simulation module.

B. Scenario generation module

In the scenario generation module, the main goal is to
generate diverse scenarios and configurations to address the
internal uncertainty of the platooning system. Prior to explain-
ing the module, we define a configuration as a set of platoon
generation features and a scenario as a sequence of operations
on the created vehicles. This module first generates random

Fig. 3. An example of platoon configuration and scenario.

platoon configurations, and then generates scenarios based on
each configuration.

When generating configurations of the platoons, We assign
random values to every parameter of the platooning configura-
tion. For example, in the configuration part of Fig. 3, the first
generated platoon consists of “6” homogeneous cars with id
“veh1” created in the “0” lane of “route1” at position “100”.
Its optimal size is “4” and its maximum size is “10”. The
second configuration shows the “4” sizes of the platoon with
id “veh2” created in the “1” lane of “route1”. Its optimal
size is “4”, and its maximum size is “8”. The pltMgnProt
option is used to check whether the vehicles use platooning
management protocols or not. In this work, we assume that the
platoons always use management protocols; thus, the value of
pltMgnProt is always “true”. We also add heterogeneous types
of vehicles to generate configurations. For example, Fig. 4
shows a heterogeneous platoon that consists of a truck leader
(V5) and three following passenger vehicles (V6, V7, and V8).

Next, to generate various scenarios, this module uses a
condition-based approach to generate the scenarios for each
configuration. A key point of the proposed approach is the
pre-simulation of the scenarios to prevent the generation of
meaningless and invalid scenarios by using the conditions and
actions of each event. For example, if the module selects events
in a purely random way, there could be meaningless scenarios,
such as executing a Split operation on a platoon with size 1,
and invalid scenarios, such as executing a Leave operation to
a vehicle which has already left the platoon.

To alleviate this problem, we first define the available events
and their conditions and actions in the platooning system.



TABLE I. Utilized events with its types, conditions, and actions

Event Types Events Condition Action

Vehicle management 1) Speed change None None

Platoon management
1) Platoon merge Two platoons exist in the same lane Merge platoons
2) Platoon split A platoon with more than size 1 exists Split the platoon into two platoons
3) Platoon leave A platoon with more than size 1 exists Decrease the size of the platoon

Policy management 1) Optimal size change None Split all platoon with size more than the optimal size

Fig. 4. Generated platoons and Humman-Driven Vehicles (HDVs) in
StarPlateS.

Table I shows five event types, such as vehicle management,
platoon management, and policy management events as well
as their conditions and actions. The Speedchange operation
changes the speed of the leader of the platoon, and the
Optimalsizechange operation changes the optimal sizes of all
platoons. This operation causes Split events in the platoons
that are larger than the assigned optimal size.

Considering the condition and action of each event, this
algorithm generates a status set in each step of the scenario
generation. For example, according to the configuration of the
two platoons shown in Fig. 3, the initial status set is as follows:
{“veh1:6”, “veh2:4”}, which describes the platoon ids and
their sizes in the initial state. Next, the proposed approach
randomly selects an available event by comparing the current
status set with the condition of each event. In the example, all
but Merge operations are available, because two platoons in the
same lane don’t exist. Then, the algorithm randomly selects
the Split event among the available events as shown in the
Fig. 31. Then the attributes of the Split operation are randomly
assigned. In the example, the Split operation is executed in
the platoon “veh1” with an index of “3” at “25 seconds”.
Using these attributes and actions, the algorithm updates the
status set. Because the Split operation divides “veh1” into
two platoons from the “veh1.3” vehicle, the example status
is changed to {“veh1:3”, “veh1.3:3”, “veh2:4”}. In this way,
we can select an available event after specific sequences of
events to successfully generate valid scenarios. Fig. 3 shows a
scenario that consists of Split, and Optsize, Leave, Merge with
the duration of 20 seconds.

C. Simulation module

After the scenario generation module returns the sets of
configurations and scenarios, the simulation module executes
the platooning management system on the configurations and

1In the VENTOS, there is an implementation issue that it returns an error
when platoons move at 0 second in a simulation. Thus, in the VENTOS
manual, they suggest to assign the platoon with speed 0 at first and change
its speed at specific times. Therefore, the first two Speedchange events are
automatically generated in Fig. 3

scenarios using the VENTOS. This module performs two
main functionalities to generate execution traces for each
configuration and scenario, and to address the environmental
uncertainty of the platooning SoS. In addition, as mentioned in
subsection A, there are two types of simulation modes: “verifi-
cation” and “single simulation”. These modes repeat the same
configurations and scenarios many times with verification and
only one time without verification, respectively.

To address the external environmental uncertainty problems
in the platooning system, this module adds stochastic envi-
ronmental objects, such as HDVs, which are not communi-
catable with C-ACC vehicles; thus, they cannot anticipate the
movement of the HDVs in the simulation, which randomly
change lanes and speeds, and even stop randomly. These
features of HDVs could make collision of vehicles in the
simulation. Fig. 4 shows generated HDVs with ids of “EV1”
and “EV2”. “EV1” is a truck vehicle and “EV2” is a passenger
vehicle. In addition, in this module, users can change the
generation period of the HDVs. Therefore, users can execute
the simulation with various environments, such as rush hour or
an empty road by changing the vehicle generation period. With
stochastic environmental objects, this module finally returns
the executions traces of each configuration and scenario to the
verification module.

D. Verification module and results

Lastly, the verification module applies the statistical model
checking algorithm to check the achievement rates of specific
goals. The verification module needs verification properties
of the platooning SoS which are related to the goals of the
system. Previous research [6] provided the formal definition of
the verification properties in a platooning management system.
However, in this definition, the properties are focused on
verifying the performance of basic operations of the system
without considering the macro-level goals, and assume that
there is only one platoon in the simulation. Because our frame-
work assumes that there are more than two platoons in the
simulation, and it attempts to verify systems with high-level
goals, the existing properties do not match our verification
goals. Therefore, we defined new verification properties that
are appropriate for verifying the high-level goals in a multi-
platoon situation.

The verification properties of the platooning system can be
written in property specification languages, such as Linear
Time Logic (LTL), and Computational Tree Logic (CTL),
Probabilistic CTL (PCTL) [14]. We chose the PCTL verifi-
cation property specification language. The defined properties
are as follows:



1) P =? [F <= t num passed veh P > n]
2) P =? [(op reject rate > x) U sim Terminate]

We defined these two properties to check the CS-level goal,
which checks arrival of participant vehicles, and SoS-level
goal, which checks the success rate of the operation in the
platoon. The meaning of the first verification property is “the
probability that more than n cars passed through the specific
point P within the first t seconds”. This verification property
checks whether the average speed of the platoon is maintained
by the end of the simulation. For example, in the experiment,
we set the average velocity of all generated platoons at 20
m/s and assigned the P value to 1,800m point to check the
average speed maintenance. The second property checks “the
probability that the rate of operation reject is over x before
the simulation terminates”. In the experiments, we assigned
the value x to 0 for checking the existence of reject signal of
the operations. Thus, by using this property, we can see how
smoothly the platoon operations were done at the occurrence
rate of the reject signal.

With the two verification properties, we applied a statistical
verification technique, the SPRT [13] algorithm which gradu-
ally checks the achievement rate of a specific property. Most
of the existing research tried to verify the platooning system
with simulating a single platoon because of the state-explosion
problem. In contrast, we overcome this limitation by applying
the statistical approach. Thus, we used 2 to 4 platoons which
consist of 3 to 6 vehicles respectively with more than 20 HDVs
to verify the platooning system in the VENTOS.

IV. IMPLEMENTATION

We implemented the framework on Ubuntu 16.04, as the
VENTOS was optimized on the OS version. As we described
above, our framework consists of three modules: a scenario
generation module, a simulation module, and a verification
module. We implemented these modules in a wrap-up system
of VENTOS, and we open the details of the implementation
in our Github2.

We decided to use the VENTOS simulator and its platooning
system for three reasons. First, VENTOS is based on the
SUMO traffic simulator, and it has many advantages for traffic
simulation. For example, it is easier to generate a map for
traffic simulation using SUMO than by using other simulators,
such as TORCS [15]. After a specific map file is downloaded
from the web, the map file can be easily imported to SUMO
by its own module. Second, VENTOS has been used in several
previous studies on traffic simulation [16]–[18]. Thus, up-
to-date techniques can be used in a simulation, such as an
online vehicle routing algorithm and accident control. Third,
in VENTOS, there are various kinds of vehicle models and
hierarchical platooning management protocols [4]. VENTOS
enables users to generate heterogeneous types of vehicles in a
simulation. It also contains hierarchical platooning manage-
ment protocols that consist of 5 operations and 17 micro-
commands. These operations are used to simulate basic events

2https://github.com/abalon1210/StarPlateS

in the scenario generation module, and the micro-commands
are used to examine logs in the verification module.

The proposed framework set a scenario generation mod-
ule to modify input files of the VENTOS simulator, which
contains the configurations of the platoons and scenarios.
The module accesses the files and changed them to newly
generated configurations and scenarios. In the implementation
of this module, one issue arises in the lane change event: it is
not enabled to change the lane of a platoon in the VENTOS
simulator. The developers of the VENTOS simulator blocked
the functionality of Lanechange in all vehicles in platoons.
Therefore, we could not generate Lanechange events in this
scenario generation module. Instead, we resolved this issue
by generating random configurations of platoons, especially
with randomly assigned values of lanes and routes. This
module generates various platoon configurations with diverse
scenarios. Thus, it effectively covers the internal uncertainties
in the platoon management system.

Before executing the VENTOS, the simulation module adds
stochastic environment objects to the input files. We use a
vehicle flow generator to continuously generate the stochastic
objects. This function enables the generation of various types
of vehicles within a specific period. For example, in the
experiments, we generated a passenger vehicle and a truck
vehicle every five seconds. These generated vehicles could
not communicate with the platoons because we turned off
the communication setting in the vehicles. As shown in the
Fig. 4, platoon 1 consists of four homogeneous vehicles with
leader(V1), and platoon 2 consists of truck leader(V2) and
three passenger followers. There are two HDVs: a truck(EV1)
and a passenger vehicle(EV2).

After generating simulation traces, the framework runs the
verification module to check the achievement rate on the
verification properties. We used existing verification property
patterns and checkers from a SIMVA-SoS [19]. SIMVA-SoS
provides the abstract functions of seven verification property
patterns and its checkers which use the SPRT statistical
verification algorithm. By using these abstract functions, we
generated verification properties and checkers for the platoon-
ing management system.

V. EXPERIMENT

A. Experimental setup

We performed experiments to determine the effectiveness
of the condition-based scenario generation algorithm which
covers the internal uncertainty of the platooning SoS and to
analyze the verification results of the platooning management
system in the defined verification properties in order to address
that covering the uncertainties of the system enables the
deep analysis of the platooning management system. The
experiments were designed to answer the following research
questions:

• RQ1. Does the random scenario generation algorithm
effectively alleviate meaningless and invalid scenarios?

• RQ2. Does the framework enable further analysis of the
platooning SoS by addressing uncertainties?



Condition-based Approach Purely Random Approach

Failed Success Failed Success
0

250

500

750

1000

N
um

be
r o

f S
ce

na
rio

s

Results Failed Success

Fig. 5. Comparison results of the generation of 1,000 scenarios.

First, to answer RQ1, we compared the condition-based
algorithm with the purely random algorithm. We generated
1,000 scenarios, which contain five events with 20 seconds
interval and checked the availability of the scenarios by check-
ing whether the scenarios were executed without any run-time
errors on the VENTOS. Next, to answer RQ2, we described
and analyzed the results of each verification property. We set
the first verification property to check “whether 80% of the
vehicles in the platoon arrived at the point of 1,800 m in 100
seconds”. We set the average speed of the vehicles at 20 m/s
and checked whether the average speed was maintained in the
generated scenarios and environment. We indirectly checked
the average speed by extracting the positions of the vehicles
at the end of the simulation. In this property, we set the
standard number of vehicles at 80% of the generated platoon
because the numbers of generated vehicles were different
in each configuration. In the second property, we checked
“whether rejection commands are occurred in the simulation”.
We checked the rejection commands of the Merge, Split, and
Leave operations in the execution logs, and we analyze the
specific configurations and scenarios that make the rejection
commands.

To answer the research questions, we used the following
settings in the experiments:

• Number of generated platoons: 2∼4
• Size of platoons: 2∼6
• Stochastic HDV generation: 1 vehicle per 5 seconds
• Simulation time: 100 seconds
The experiments were executed on an infinite size of a one-

way road with three lanes. The generated platoons and HDVs
were randomly assigned to one of the three lanes. Platoons
are randomly generated with 2 to 4 sizes consisting of 2 to
6 vehicles. We set the HDV generating duration five seconds.
Therefore, there were 20 HDVs at the end of the simulations.
We also changed the non-accident option to enabing accidents.

B. Experimental results

In the experiments performed to answer RQ1, we com-
pared the condition-based approach with a purely random
approach to generate scenarios. We generated 1,000 scenarios

0.0

2.5

5.0

7.5

10.0

12.5

Speedchange Failure Lanechange Failure Success

N
um

be
r o

f S
ce

na
rio

s

Results Speedchange Failure Lanechange Failure Success

Fig. 6. Verification results of average speed maintenance.

and executed them in the VENTOS simulator to check their
availability. As shown in Fig. 5, the condition-based approach
generated more than 50% of the valid scenarios compared
with the purely random approach. By examining the failed
cases using the purely random method, we found that most of
the failed scenarios were caused by the Operation parameter
error, which requests an operation with an invalid vehicle id
to a platoon, such as sending a Leave operation to the vehicle
that has already left. This error occurs mainly in the Leave and
Split operations because we found that the errors of the Merge
operation are handled as an exception in the platooning system.
We further checked the successful scenarios in two generation
approaches. We found that no scenario contained meaning-
less operations using the condition-based approach, but 126
scenarios, almost 30% of the successful scenarios using the
purely random approach had meaningless operations, such as
Merge operation to a participant of a platoon. Therefore, in
the condition-based approach, more than 50% of available
scenarios were generated and the condition-based approach did
not have any meaningless operation in the available scenarios,
while the purely random approach generated 30% of available
scenarios involving meaningless operations.

Fig. 6 shows the verification results of the platooning
management system for the first verification property, which
checked the average speed of the generated platoons. We
generated 20 configurations and scenarios, and repeated each
simulation 1,000 times. We generated about 100 GB of execu-
tion logs, which are used to verify and analyze the platooning
system. We identified the success and failure of the verification
results by whether they achieved 100% or not. As shown in
Fig. 6, 12 scenarios, about 60% of the generated scenarios
achieved that more than 80% of the vehicles in the generated
platoons passed the 1,800 m point, which means that they
maintained the average speed: about 20 m/s. We analyzed
the failed cases and found that most of them were caused by
accidents on the same lane with one of the generated platoons.
If a vehicle had a collision, it took some time to clear the road.
However, as we mentioned in section IV, in this platooning
system, there is no Lanechange operation to manipulate the
platoons. Therefore, the platoons in the same lane in which



Merge Split Leave

Failed Success Failed Success Failed Success
0

5

10

15

20

N
um

be
r o

f S
ce

na
rio

s

Results Failed Success

Fig. 7. Verification results of rejection commands in each operation.

an accident occurred had no choice but to wait for the debris
to be cleared. It is a limitation of the platooning management
system provided by VENTOS, and it reduces the realism of the
simulation. The other failed cases were caused by the speed
change operation in the generated scenario, which reduced the
speed of the platoon to much lower than 20 m/s.

Regarding the verification of the success rate of operations
in the platooning management system, Fig. 7 shows that in
the 20 cases, rejection commands were detected only in the
Merge operation. By examining the execution logs of the failed
cases, we found that detected rejections in the Merge operation
occurred when 1) the leader of the front platoon was in the
process of another operation, such as Split, Leave, or Merge,
2) the leader is changed to follower or disappeared after the
operation. In this case, the behind leader continuously requests
Merge operation to the vehicle which is not a leader any
more. This “busy-leader” problem indicated the presence of
performance-degrading factors in the sequential execution of
operations. In addition, we found that the requesting vehicle
kept sending messages to the vehicle. This repetition could
result in a dead-lock problem if another event were operated
in the requesting vehicle.

Next, we determined the reasons that the rejection com-
mands in the other operations were not detected. The main
reason was that the condition-based approach was not a
guided approach; thus, it was difficult to generate specific
rejection scenarios among 20 cases. Another potential reason
is that the conditions for rejecting other operations were more
complicated than the Merge operation.

C. Threats to validity

In the experiment for RQ1, we suggested two factors,
availability and meaningless to compare the algorithms. How-
ever, we only used the meaningless factor as an additional
evaluating factor because it is infeasible to distinguish between
scenarios involving meaningless operations and scenarios only
consisting of meaningless operations in manual way. There-
fore, we mainly used the availability of the scenarios and
checked whether the success scenarios involve the meaningless
operations or not. In addition, there were still failed scenarios
using the condition-based algorithm in Fig. 5. They were

mostly caused by the optimal size change operation. In the
algorithm, it checks the optimal size of each platoon in
the beginning and execution of Optimalsizechange operation.
However, there is an additional condition when platoons are
merged and exceed the optimal size of the front platoon. We
will improve the algorithm in a future work. Next, we set the
empirical values of the verification properties, such as 80%
of the vehicles and specific 1,800m point. To the best of our
knowledge, we did not find an existing example that matched
with our purposes. Thus, we set the acceptable values which
evaluate moderate satisfaction of the platooning operation.

VI. RELATED WORKS

Several previous studies have provided tools for verifying
the platooning system for specific goals, such as safety and
resilience [6], [8]. Vieira et al [8] provided an integrated
simulator consisting of the robot operating system (ROS)
based simulator [20] and OMNET++ to test a communication
network model of the platooning system. In the present work,
the network frequency of a communication channel was used
as test input to verify the maintenance of a generated platoon.
Kamali et al. [6] focused on the spatial and timing constraints
of the platooning system using an agent-based model with an
integrated simulator of TORCS and MATLAB/Simulink [21].
However, they did not use the simulator to verify their model;
instead, they used the UPPAAL model checker with a formal
model. Both studies used a single platoon and did not consider
the environment in the simulation and verification. Vieira et al.
considered infrastructural settings in the system by changing
the network frequency, but this work may not have sufficiently
covered the uncertainty factors in the platooning system. In
addition, their verification techniques were not compatible
with verifying the platooning system in scalable situations.

In other previous studies [5], [7], [22], [23], formal mod-
els of the platooning system were designed and verified
using existing tools, such as UPPAAL and MATLAB VnV
Toolbox [24]. Elgharbawy et al. [7] verified the safety of
an automated truck driving system by including unexpected
environmental situations. They added stochastic properties to
environmental sensing modules and exhaustively verified the
system in several scenarios. However, their definition of a
scenario was different from ours. They used a scenario to
represent the parameter settings in a vehicle. We infer that they
used a single vehicle to verify their system. Achrifi et al. [22]
also focused on environmental uncertainty issues. They mainly
described the advantages of the MATLAB VnV framework for
verifying advanced driving assistant (ADAS) models. In this
study, they also used a single ADAS model and did not include
environmental factors in testing it. Mallozzi et al. [5] proposed
a formal model for selecting platoon leaders in UPPAAL. They
used diverse scenarios with different numbers of vehicles and
platoon operations to verify the system in UPPAAL. Although
they partially covered the internal uncertainty of the platooning
system, they only used a single platoon and homogeneous
vehicle types in the verification and didn’t consider envi-
ronmental factors. Meinke [23] verified a platooning system



in scenarios in which the leaders speed was changed. Their
research focused on the scalability of the platooning system
and simulated different numbers of vehicles in a platoon. This
research only used a Speedchange event in the scenarios, thus
they locally cover the internal uncertainties of the system.

To the best of our knowledge, no previous study has
simultaneously used various numbers of platoons and vehicles
with stochastic environmental objects in the verification. Pre-
vious studies only partially covered the uncertainties in the
platooning system. Moreover, most of the previous studies
used exhaustive verification techniques that could not bypass
the state-explosion problem. In contrast, our framework covers
the internal and external uncertainties using various factors
and applies the SPRT algorithm, which alleviates the state-
explosion problem.

VII. CONCLUSION

We proposed a statistical verification framework, StarPlateS
for a platooning SoS. This framework addressed uncertainty is-
sues in the platooning system by implementing three extended
modules on the VENTOS simulator: a scenario generation
module, a simulation module, and a verification module.
The scenario module generated random configurations and
scenarios using the condition-based algorithm and addressed
the internal uncertainty of the system. In the simulation mod-
ule, we added stochastic HDVs to cover external uncertainty
around the platoons. The verification module applied the
SMC algorithm to bypass the state-explosion problem. By
this approach, we found two undiscovered failure cases in the
VENTOS platooning algorithm with 20 scenarios.

Our future research includes the development of a guided-
scenario generation algorithm, further definition of verification
properties, and the application of localization techniques to
determine the causes of failures in the proposed framework.

ACKNOWLEDGEMENT

This research was supported by the Institute for In-
formation & communications Technology Promotion (IITP)
grant funded by the Korea government (MSIP) (No. 2015-
0-00250, (SW Star Lab) Software R&D for Model-based
Analysis and Verification of Higher-order Large Complex
System), and Next-Generation Information Computing Devel-
opment Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Science, ICT
(2017M3C4A7066212).

REFERENCES

[1] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska,
“Systems of Systems Engineering: Basic Concepts, Model-based Tech-
niques, and Research Directions,” ACM Computing Surveys (CSUR),
vol. 48, no. 2, p. 18, 2015.

[2] P. Liu, B. Xia, Y. Tan, and D. Zhao, “Modeling and Robust Optimization
for System of Systems Problems under Uncertainty,” in 2018 IEEE 4th
International Conference on Control Science and Systems Engineering
(ICCSSE). IEEE, 2018, pp. 385–390.

[3] Y. Nomaguchi, K. Kawakami, K. Fujita, Y. Kishita, K. Hara, and
M. Uwasu, “Robust Design of System of Systems using Uncertainty
Assessment based on Lattice Point Approach: Case Study of Distributed
Generation System Design in a Japanese Dormitory Town.” IJAT,
vol. 10, no. 5, pp. 678–689, 2016.

[4] M. Amoozadeh, H. Deng, C.-N. Chuah, H. M. Zhang, and D. Ghosal,
“Platoon Management with Cooperative Adaptive Cruise Control En-
abled by VANET,” Vehicular communications, vol. 2, no. 2, pp. 110–
123, 2015.

[5] P. Mallozzi, M. Sciancalepore, and P. Pelliccione, “Formal Verification
of the On-the-fly Vehicle Platooning Protocol,” in International Work-
shop on Software Engineering for Resilient Systems. Springer, 2016,
pp. 62–75.

[6] M. Kamali, S. Linker, and M. Fisher, “Modular Verification of Vehicle
Platooning with respect to Decisions, Space and Time,” in International
Workshop on Formal Techniques for Safety-Critical Systems. Springer,
2018, pp. 18–36.

[7] M. Elgharbawy, “A Big Testing Framework for Automated Truck
Driving,” Urban transportation and construction, vol. 4, no. 1, pp. e27–
e27, 2019.

[8] B. Vieira, R. Severino, A. Koubâa, and E. Tovar, “Towards a Realistic
Simulation Framework for Vehicular Platooning Applications,” arXiv
preprint arXiv:1904.02994, 2019.

[9] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and
systems & workshops. ICST (Institute for Computer Sciences, Social-
Informatics and , 2008, p. 60.

[10] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO–
Simulation of Urban Mobility: An Overview,” in Proceedings of SIMUL
2011, The Third International Conference on Advances in System
Simulation. ThinkMind, 2011.

[11] A. Legay, B. Delahaye, and S. Bensalem, “Statistical Model Checking:
An Overview,” in International conference on runtime verification.
Springer, 2010, pp. 122–135.

[12] H. L. Younes, M. Kwiatkowska, G. Norman, and D. Parker, “Numerical
vs. Statistical Probabilistic Model Checking,” International Journal on
Software Tools for Technology Transfer, vol. 8, no. 3, pp. 216–228,
2006.

[13] A. Wald, “Sequential Tests of Statistical Hypotheses,” The annals of
mathematical statistics, vol. 16, no. 2, pp. 117–186, 1945.

[14] P. Schnoebelen, “The Complexity of Temporal Logic Model Checking.”
Advances in modal logic, vol. 4, no. 393-436, p. 35, 2002.

[15] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner, “Torcs, the Open Racing Car Simulator,” Software available
at http://torcs. sourceforge. net, vol. 4, no. 6, 2000.

[16] S. Ucar, S. Coleri Ergen, O. Ozkasap, D. Tsonev, and H. Burchardt,
“Secvlc: Secure Visible Light Communication for Military Vehicular
Networks,” in Proceedings of the 14th ACM International Symposium
on Mobility Management and Wireless Access. ACM, 2016, pp. 123–
129.

[17] B. Zheng, C.-W. Lin, H. Yu, H. Liang, and Q. Zhu, “CONVINCE:
A Cross-layer Modeling, Exploration and Validation Framework for
Next-generation Connected Vehicles,” in 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2016, pp.
1–8.

[18] S. Ucar, B. Turan, S. C. Ergen, O. Ozkasap, and M. Ergen, “Dimming
Support for Visible Light Communication in Intelligent Transportation
and Traffic System,” in NOMS 2016-2016 IEEE/IFIP Network Opera-
tions and Management Symposium. IEEE, 2016, pp. 1193–1196.

[19] SE Lab in KAIST, “SIMVA-SoS: Simulation-based Verification and
Analysis for SoS,” [Online; accessed 2-July-2019]. [Online]. Available:
https://github.com/SESoS/SIMVA-SoS

[20] Aaron Blasdel, “Robot Operating System (ROS),” [Online; accessed
2-July-2019]. [Online]. Available: https://www.ros.org/

[21] Math Works, “Simulink,” [Online; accessed 2-July-2019]. [Online].
Available: https://www.mathworks.com/products/simulink.html

[22] S. Achrifi, “Coverage Verification Framework for ADAS Models,”
March 2017.

[23] K. Meinke, “Learning-based Testing of Cyber-Physical Systems-of-
Systems: A Platooning Study,” in European Workshop on Performance
Engineering. Springer, 2017, pp. 135–151.

[24] Math Works, “VnV Toolbox,” [Online; accessed 2-July-2019].
[Online]. Available: https://www.mathworks.com/products/transitioned/
simverification.html


