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Abstract—Interactions between software components play a
major role in the achievement of goals in complex systems,
such as platooning System-of-Systems (SoS). A platooning SoS
groups vehicles in order to increase their fuel efficiency and
alleviates traffic congestion by enabling driving in close proximity
using operation protocols. In a platooning SoS, the execution
of typical operations, such as Leave or Merge, consists of
20 micro-operations on average. Owing to this overabundance
of sub-operations, interaction failures in a specific operation
sequence can occur in an SoS execution. Further, analyzing the
root cause of such failures is highly time-consuming, due to
the density of the constituent interactions. Existing techniques
suffer from two limitations: (1) The majority of the root cause
analysis techniques are not capable of isolating faulty interaction
sequences, because they do not directly utilize interaction data;
(2) The majority of the fault diagnosis techniques assume the pre-
examined fault knowledge base, which needs too high cost due to
limited knowledge in an SoS. To effectively analyze interaction
failures in an SoS, we propose a pattern-based faulty interaction
analysis technique. To this end, an interaction model is first
defined for an SoS, followed by the proposal of a suspicious
interaction pattern mining algorithm. During the case study using
a platooning simulator, the technique automatically abstracts
interaction data from logs and extracts faulty interaction pat-
terns, thereby enabling the identification of seven new unreported
interaction failure scenarios. The conclusions of this study can
enrich the general fault knowledge base for platooning SoS.

Keywords—Platooning System-of-Systems, Interaction Failure,
Fault Analysis

I. INTRODUCTION

Recently, platooning System-of-Systems (SoS) has garnered
huge attention in research due to its positive impacts on fuel ef-
ficiency and traffic congestion, leading to various environmen-
tal and business benefits [1], [2]. An SoS is a complex, hetero-
geneous system comprising independent Constituent Systems
(CSs) to achieve common goals that cannot be achieved by a
single CS [3]. A platooning SoS operates by grouping vehicles
in close proximity into one unit and manages them using
operation protocols, such as Leave and Merge, to achieve
SoS-level goals [4]. One of the characteristics of an SoS is that
most SoS-level operations involve intricate interactions among
its CSs. Because of this characteristic, there exist certain types
of failures, called interaction failures, caused by a specific
faulty sequence of interactions.

Even though many global companies, such as Daimler
(Mercedes-Benz Trucks) [5], Volvo [6], and Hyundai [7], have
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Fig. 1. An example interaction failure scenario in Platooning SoS

succeeded in operating platoons on real roads, it is difficult to
guarantee the faultless functioning of such a highly complex
software with respect to all possible interactions. Fig. 1 depicts
an example of the interaction failures, which is induced by si-
multaneous Leave and Merge requests. In this example, the
leader of platoon-1, v1, tries to leave the platoon, but the leader
of platoon-2, v5, transmits a Merge request to v1 before
v1’s Leave operation is completed. This situation inhibits
the normal execution of Merge operations and adversely
affects the execution time of the ongoing Leave operation.
In order for SoS to work without interaction failures, it is
important to systematically identify and analyze faulty inter-
action sequences in advance, which are fundamental causes of
interaction failures.

Recent studies have applied a Spectrum-based Fault Local-
ization (SBFL) to isolate the most suspicious components of
failures in large-scale systems [8], [9]. Shin et al. [8] applied
the SBFL technique to disaster-response SoS to identify faults
injected within it. Arrieta et al. [9] also applied the SBFL
technique to localize the most suspicious feature in a software
product line. However, existing techniques suffer from certain
limitations in the identification of suspicious interaction se-
quences. Firstly, the techniques do not directly utilize detailed
interaction data to analyze the fundamental cause. Instead, they
only abstract high-level information from systems, such as
participant CSs, and the existence of the connections between
CSs. Secondly, due to the infinite number of combinations of
interaction sequences, it is infeasible to apply SBFL to extract
faulty interaction sequences.

Other existing studies have focused on applying machine
learning techniques to diagnose root causes underlying failures



in an SoS [10], [11]. Kleyko et al. [10] constructed a matrix-
based abstraction model of a nuclear power plant and pro-
posed a hyperdimensional vector-based diagnostic approach
to efficiently match patterns based on a fault knowledge base.
Cai et al. [11] suggested a fast Object-Oriented Bayesian
Network (OOBN)-based fault diagnosis model for a subsea
production system. The primary limitation common to these
techniques is that they only consider the “known faults”
assuming the existence of the pre-examined fault knowledge
base of a system. In an SoS, each CS is regarded as a
black-box system because of its operational and managerial
independence. Thus, assuming the well-specified fault data of
an SoS is practically infeasible. The existing techniques that
require a fault knowledge base are not suitable for an SoS,
which is difficult to expect pre-examined fault data.

To overcome the aforementioned limitations of existing
approaches, we propose a pattern-based failure-inducing in-
teraction analysis technique, which mines the most suspicious
interaction patterns from the logs of failed executions. The
major contributions of this study are as follows:

• We suggest an interaction model for an SoS, which
abstracts interaction features and operation sequences on
each SoS execution log.

• We define an approach to automatically mine faulty
interaction patterns by extending the Longest Common
Subsequence (LCS) algorithm.

• We identify detailed interaction failure scenarios in a
platooning SoS, which can be used as testing benchmarks
and a fault knowledge for general platooning systems.

By applying the interaction model and pattern mining algo-
rithm, we conduct a case study on a platooning SoS using
StarPlateS [12]. In the case study, we categorize the detected
failures into three classes and develop seven detailed interac-
tion failure scenarios without any existing fault knowledge on
the platooning SoS. To the best of our knowledge, this is the
first study to provide interaction failure scenarios with respect
to the platooning SoS.

The remainder of this paper is organized as follows: Section
2 explains the background. Section 3 elucidates the proposed
approach, and Section 4 presents the case study on the
platooning SoS and evaluates the case study result. Section
5 describes works related to this research. Section 6 discusses
the implications of our findings, recommends directions for
future work, and concludes the paper.

II. BACKGROUND

A. StarPlateS: Statistical Verification Framework for Platoon-
ing SoS

A platooning SoS is a highly complex system, which should
be capable of functioning in as many environments as possible
to ensure reliable operation. Since it is difficult to test a
platooning SoS in all possible real-world scenarios, a simulator
is necessary [4]. Several recent studies have investigated
simulation and verification of platooning SoS [12], [13], [14],
[15]. In order to focus on interactions between platooning

vehicles during various operations, we used StarPlateS [12]
for this purpose, which focuses on platooning operations and
realistic scenario generation.

StarPlateS is a VENTOS [4] extended framework that
considers internal and external uncertain factors enabling it to
deal with realistic scenarios. The implementation of roads and
vehicles in StarplateS is based on the SUMO simulator and
communication between vehicles is based on OMNET++ sim-
ulator. With the integration of the simulators, StarplateS gener-
ates random platooning configurations and scenarios, generates
execution logs for the scenarios, and verifies platooning goals
using the logs. In this context, a platooning configuration
denotes a set of platoon generation features, and a scenario
denotes a sequence of basic operations in the platooning SoS-
Merge, Split and Leave. During the Merge operation, two
distinct platoons merge into a single platoon, while the Split
operation does exactly the opposite. The Leave operation is
executed when a member of a platoon wishes to leave the
platoon. During Merge operation, two distinct platoons merge
into one platoon, while Split operation does exactly the
opposite. Leave operation is executed when a member of
the platoon wants to leave out of the platoon.

In this paper, we used two primary modules in StarplateS-
the scenario generation and the simulation module in the
case study. The scenario generation module generates random
platooning configurations and scenarios, then the simulation
module runs the VENTOS simulator to generate execution logs
for the scenarios.

B. Spectrum-Based Fault Localization (SBFL) Technique

To identify failure-inducing interactions based on the data
present in logs of failures, we propose a pattern mining-based
fault localization technique. A fault localization technique pin-
points suspicious locations in a program, such as statements,
that merit the programmers’ attention [16]. Program locations
that appear to be erroneous are called suspicious locations.
Corresponding to any set of test cases, including failed cases,
a list of suspicious locations in the program is produced.

The SBFL techniques utilize code coverage corresponding
to each test case to determine suspicious locations. Code
coverage, which is also called the program spectrum is an
execution trace of a program [16] with respect to a specific
input. The basic concept of SBFL techniques for determining
suspicious locations is that the more program location is
executed in failed cases, the more it is considered suspicious.

In the case of large and complex SoS, identification and
correction of failures are effort-intensive tasks. Since fault
localization techniques help engineers to analyze the root
causes and occurrence contexts of failures, SBFL techniques
have been used for localizing faults in large-scale complex sys-
tems, such as a disaster-response SoS and a software product
line [8], [9]. However, our study deals with interaction failures
in a platooning SoS, in particular. In order to effectively
extract faulty interactions from logs of failures, we propose
an interaction model for the SoS and a Longest Common
Subsequence (LCS)-based pattern mining algorithm.



III. FAILURE-INDUCING INTERACTION PATTERN MINING

A. Overall Process

We propose a pattern-based analysis technique to process
the interaction data present in SoS execution logs and extract
failure-inducing interaction patterns. Fig. 2 depicts the overall
process of the proposed approach. It comprises three major
phases — interaction model generation, Dynamic Program-
ming for Longest Common Subsequence (DP-LCS)-based
pattern mining, and analysis of the identified patterns.

The technique uses two inputs: execution logs and their
Passed/Failed results of goal property checking. Based on
the data present in the logs, the proposed technique first
identifies the CSs and their interactions that are executed
during a single run of the SoS. Interactions refer to sequences
of communication traces (e.g., messages) that are captured
in a communication network. Then, the proposed technique
attaches the goal property check result of each log to each
Interaction Model (IM ). Each interaction model is generated
by aggregating a set of identified CSs, a sequence of messages,
and a Passed/Failed tag. We assume the existence of an
external goal verification module, due to the scalability for
diverse domains. For instance, in the case study presented
later, we used SIMVA-SoS [17] to inspect each execution
log. Further details about IMs and IM -generation have been
included in the next subsection.

The next phase comprises the extraction of patterns of
suspicious message sequences from the generated IMs. Since
it is inadequate to assume the existence of a single bug in
the SoS due to its large scale and complexity, we assume that
the SoS suffers from multiple faults and each failed IM may
contain one or more faulty patterns. The proposed technique
searches for the existence of LCSs between each pair of failed
IMs and assigns such pairs to the same category. Via this
process, each category eventually becomes populated by failed
IMs, which can be expected to have been induced by similar
root causes. The extracted LCS pattern corresponding to each
category, which is a specific message subsequence observed to
be common to all the IMs belonging to that category, can be
used to analyze the fundamental cause and occurrence context
of the associated failure.

By analyzing the output patterns in detail, SoS engineers
can gain an understanding of the root causes and occurrence
contexts of failures by analyzing the categorized LCS patterns
and IMs. We demonstrate detailed examples of outputs at the
end of this section and outline the manual analysis process
and its results in the next section.

B. Interaction Model Generation

The system abstraction model plays an important role in
fault analysis in complex systems because the root causes
of failures can be isolated based solely on the abstracted
information of a system model. For instance, existing studies
have utilized high-level information of system execution [8],
[10]. They abstracted the participating CSs and the com-
munication between them. However, the existing abstraction
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Fig. 2. Overall process of the pattern-based interaction failure analysis

models do not include internal sequences of interactions and
contexts of execution, rendering the existing models unsuitable
for interaction-failure analysis. In order to utilize sufficient
interaction features, such as occurrence context and execution
flow, in fault analysis, we define the interaction model (IM )
and construct an automated IM generation module from
execution logs. The IM is defined as follows:

IMi = (CSi, Mi, tagi)

CSi = {csj | csj is a participating CS in Li, i-th Log}
Mi = {msgk}lik=0, which are delivered in Li,

where msgk = 〈continuity, synchronization, sender,
receiver, content, time〉

tagi = Passed or Failed result of Li on a goal property

IMi, which is an instance of IM generated from Li, consists
of three components: CSi, Mi, and tagi. CSi is a set of csj
instances that participate in an SoS during the execution of the
log, Li. The participation of a csj comprises serving a specific
function for the achievement of common SoS-level goals. For
instance, in the platooning SoS, we marked vehicles capable
of executing platooning operations as participating CSs.
Mi denotes an ordered sequence of messages, with its length

li that are communicated during the execution of Li. In other



TABLE I
FEATURES OF COMMUNICATION MESSAGES FOR INTERACTION MODEL

Feature Type Example

Continuity
Enumeration of Continuous
Communication (CC) and
Temporary Communication (TC)

TC

Synchronization Enumeration of Synchronous
(Sync) and Asynchronous (Async) Sync

Initiating Entity String CS A
Receiving Entity String CS D
Content Message Operation

Request
Start Time Time 2019/12/24:000000
End Time Time 2019/12/24:000159
Delay ms 159

words, Mi is the formal representation of a sequence diagram
that is executed in Li. Each message msgk in the Mi denotes
a vector of SoS interaction features. To extract interaction
features in an SoS, we refer to existing studies that identify
features of interaction and communication in various domains,
such as autonomous vehicles [18], telecommunication sys-
tems [19], and web services [20], [21].

Table I depicts the features that are used to represent
message-based interactions and their types. The Continuity
feature determines whether a sender sends a single message
(Temporary Communication, TC) or a stream of messages
(Continuous Communication, CC). The Synchronization de-
termines whether a delivered message is synchronous (Sync)
or asynchronous (Async). The Continuity and Synchronization
features together capture the concurrency properties among the
CSs. The Initiating/Receiving Entity refers to the sender and
the receiver of any message. The Content feature describes
the contents of a message, while Start Time, End Time, and
Delay are used to record the sending and receiving times of
the message in the IM . Example values of the Content feature
include 17 micro-commands defined in a platooning operation
protocol [4], such as LEAV E REQ, LEAV E ACCEPT .
The Content feature can be used to assess certain types of
conflicts, such as interface conflicts and goal conflicts between
CSs. The Initiating/Receiving Entity and Content features
can be used to assess direct and indirect resource conflicts
during the system operations by analyzing the relationships of
Initiating Entity and Receiving Entity with Content [18].

The final component of the interaction model is tagi. Each
execution log can be evaluated by whether it satisfies a certain
goal of the SoS. The goal satisfaction result corresponding to
the i-th execution log, Passed/Failed, is assigned to tagi.

We implemented the aforementioned IM generation mod-
ule, which automatically identifies participating CSs and in-
teraction features of Li. Following identification, the module
attaches a tagi to each IMi. The external module analyzes
the logs to determine whether Li passes a certain goal. Then,
the Passed/Failed result is stored in the tagi in IMi.

C. DP-LCS-based Pattern Mining Algorithm

The next phase involves the mining process of suspicious
interaction sequences based on Dynamic Programming for

Algorithm 1: Suspicious interaction pattern mining
Input : A set of IMs with size N
Output: A set of extracted LCSs with detected counts

1 suspKnowledge ← ∅;
2 matchedIMs[][] ← ∅;
// Compare IMi with existing

knowledge set
3 for i ← 0 to N − 1 by 1 do
4 for j ← 0 to Sizek by 1 do

// IMi matched with a pattern
5 if DP-LCS(IMi, LCSj) exists then
6 update knowledge set(min length(DP-

LCS(IMi, LCSj), LCSj))
matchedIMs[j].append(IMi);

7 else
// Not matched with patterns

8 add knowledge set(IMi.M);
9 matchedIMs.add([IMi]);

10 end
11 end
12 end
13 return (suspKnowledge, matchedIMs);

Longest Common Subsequence (DP-LCS) algorithm. Algo-
rithm 1 depicts the proposed DP-LCS-based mining algorithm
that isolates failure-inducing interactions and categorizes them.
We assume the existence of multiple faults in the SoS and
multiple faulty interaction patterns within a single execution of
each IM . We construct the algorithm based on the following
branches- (1) adding a given IM to the existing category, (2)
creating a new category with the IM . Lines 5 to 7 illustrate
the IM -addition case. The algorithm decides to add an IM
to an existing category when an LCS exists between the
IM and existing LCS pattern. Line 5 depicts the decision-
making process. If a common interaction subsequence exists,
the given IM is assigned to the category and the interaction
pattern of the updated category is newly extracted involving
the given IM . Each IM can be assigned to multiple categories
if it possesses multiple subsequence patterns satisfying the
aforementioned condition. Lines 8 to 9 illustrate the process of
a category creation in case no LCS exists between the IM and
any of the existing patterns in the knowledge base. In this case,
the IM is added to a new category and its message sequence
M is firstly assigned as the new pattern for that category.

The LCS generation algorithm is explained in complete
detail in Algorithm 2. We use a Dynamic Programming (DP)
solution to generate the LCS because it demonstrates a feasible
performance of O(Sizep ∗ Sizek). The LCS generation algo-
rithm begins by generating an LCS table by comparing two
IMs, as illustrated in lines 6 to 17. Lines 18 to 24 illustrate
the process of extraction of a sequence of commonly observed
messages from the table. The basic flow of the algorithm is
similar to the existing DP-LCS algorithm for strings. The
existing algorithm compares all characters in the strings to
generate the LCSs. We expand the string-based comparison



Algorithm 2: LCS extraction algorithm for IM
Input : IMp, IMk

Output: An extracted LCS
1 Sizep ← Size(IMp.M );
2 Sizek ← Size(IMk.M );
3 LCSTable ← [][];
4 current ← 0;
5 LCS ret ← ∅;
// Generate LCSTable

6 for i ← 0 to Sizep by 1 do
7 for j ← 0 to Sizek by 1 do
8 if i == 0 || j == 0 then
9 LCSTable[i][j] = 0;

10 end
11 if compare message(IMp.M[i], IMk.M[j])

== True then
12 LCSTable[i][j] = LCSTable[i-1][j-1] + 1;
13 else
14 LCSTable[i][j] = MAX(LCSTable[i][j-1],

LCSTable[i-1][j]);
15 end
16 end
17 end

// Extract LCS from the LCSTable
18 for i ← 1 to Sizep by 1 do
19 for j ← 1 to Sizek by 1 do
20 if LCSTable[i][j] > current then
21 current++;
22 add LCS ret(IMi.M [i]);
23 end
24 end
25 end
26 return LCS ret;
27

28 Function compare_message(msgi, msgj):
29 ret ← false;
30 if continuity, synchronousness, sender,

receiver, content are identical then
31 ret = true
32 end
33 return ret;

metrics to message comparison metrics in the IM . As defined
in lines 28 to 33, two messages are considered to be identical
if the Continuity, Synchronousness, Sender and Receiver, and
Content features of the two messages share identical values.
We do not employ time-related features for the comparison,
because the same message may be delivered at different times
during a simulation. The same issue exists in the case of
Sender/Receiver comparison. To address this, we compare
Sender/Receiver by abstract CS classes, such as Follower and
Leader in the platooning SoS, not by concrete CS instances,
like vehicle ID. The abstract classes can be defined by the
types of roles in an SoS. The implementation of the proposed
algorithm has been included in our repository [22].

In other words, the proposed algorithm returns a set of
LCS patterns and categorized IMs that contain the patterns
common to each category. The suspicious patterns involving
the contexts of failures aid SoS engineers to analyze the
failures of the categories, and understand their contexts of
occurrence and root causes.

D. In-depth Analysis based on an Illustrative Example

Fig. 3 depicts an illustrative example of the process, the
interaction model structure, and the outputs of the algo-
rithm. Given the logs of an SoS, the proposed technique
first automatically produces interaction models (IMi) cor-
responding to each log (Li), which contains system traces
pertaining to the i-th execution. In the example, IM0 con-
tains an ordered sequence of four messages (M0), a set
of four participating CSs (CS0), and a Passed tag (tag0).
Each message in M0 is a vector consisting of the spe-
cific features that are explained in Table I. The exam-
ple illustrates that msg0 comprises the values: TC, Sync,
sender A and receiver B, SPLIT_REQ content, and time
values of 2019/12/24:000000000, 2019/12/24:000159000, and
159000. This indicates that msg0 is transmitted to convey a
SPLIT_REQ from A to B as a temporal and synchronous
message with a delay of 159000 ms.

By using the generated interaction models, the technique
runs a DP-LCS-based suspicious interaction pattern mining
algorithm. The output of this algorithm is a knowledge table
comprising all suspicious LCS patterns, categorized IMs, and
further information for subsequent analysis, such as detection
counts. In the example, two LCS patterns are listed. The first
one, LCS0, consists of three messages, and this pattern is
observed in 35 IMs — IM1 , IM9 , · · · , IMn−1. The second
suspicious pattern, LCS1, is a sequence of four messages, and
it is detected in 13 different IMs.

The last phase of the technique involves the analysis of the
results by SoS engineers. Each row of the output table in Fig. 3
includes categorized IMs and corresponding LCS patterns,
which might cause interaction failures in the SoS. In other
words, each row denotes an independent category, and IMs
in the category contain a discriminative interaction pattern,
which causes a specific interaction failure. SoS engineers can
utilize the output to analyze the detected interaction failures
in great detail.

IV. CASE STUDY

A. Study Design

The goal of our case study is to demonstrate the effective-
ness of the proposed technique using a platooning simulation
and verification framework, StarPlateS [12], and to analyze
unknown faulty interactions in the platooning SoS. The fol-
lowing research questions are used to evaluate the technique:

1) RQ1. Does the proposed technique effectively extract
suspicious patterns including a sufficient understanding
of the contexts and interactions?

2) RQ2. Can SoS engineers utilize mining results to ana-
lyze faulty scenarios of a platooning SoS?



Fig. 3. Illustrative example of the interaction model-based fault localization

RQ1 is aimed at the high-level analysis of the DP-LCS-
based pattern mining results. To answer this question, we
analyzed the detailed contexts and execution flows of the
extracted interaction patterns. RQ2 is aimed to determine the
practicality of the technique by subdividing the categories into
detailed scenario cases. In practice, we performed a manual
investigation of each IM based on the high-level analysis
results and identified seven interaction failure scenarios in the
platooning SoS.

In this case study, we used two StarPlateS modules —
the scenario generation module and the simulation module.
Using these modules, we generated random scenarios of the
platooning SoS and produced corresponding execution logs.
The proposed technique also requires a goal property check-
ing result for each log. We modified a verification module
present in SIMVA-SoS [17] to construct an independent goal
verification module. We selected the following criterion from
StarPlateS, which is the most relevant one in the evaluation of
the correct execution of operations in the platooning system:

• P =? [(op success rate > x) ∪ sim Terminate]

This criterion determines the number of requested operations
that are successfully executed in a simulation. For example,

if 10 operations are requested in or between platoons, and 9
out of 10 requested operations are successfully executed, the
op success rate of the simulation is taken to be 90%.

The detailed settings of platooning scenarios for the case
study are described as follows:

• Total number of generated scenarios: 600 scenarios
• Duration of a Single simulation: 100 seconds
• Number of generated platoons: 2∼4 platoons
• Size of each platoon: 2∼6 vehicles
• Environmental objects: 1 Human-Driven Vehicle (HDV)

generated every 5 seconds
In total, we randomly generated 600 scenarios with a duration
of 100 logical seconds for a single simulation. In every simula-
tion, the number of generated platoons was randomly decided,
from two to four, with randomly assigned sizes between
two to six vehicles. Moreover, we defined a generator for
HDVs, which were not connected with platoons and randomly
changed lanes and speed. The generator added an HDV into
simulation every five seconds. Then, we generated 600 IMs
based on the logs and extract suspicious interaction patterns
via the proposed algorithm. In the next section, we elucidate
the mining and analysis results in detail.

B. Evaluation

In order to adequately answer RQ1, we analyzed the
qualitative meanings of mined patterns extracted from the
600 simulated scenarios in terms of the op success rate
criterion. We set the success rate threshold as 80% and
extracted LCS patterns from 258 failed scenarios. The mining
results demonstrate that there exist three major patterns in the
op success rate-related failures. We examined the patterns
in detail to determine (1) root causes of the failure categories
and (2) the contexts of the failed executions. Fig. 4 depicts the
sequence patterns of faulty interactions corresponding to each
category. Green areas represent the contexts of the executions,
which aid the understanding of the failure scenarios, and red
areas provide clues for root causes behind failures.

All three LCS patterns are observed to contain the Merge
operation. Each pattern contains at least three Merge requests
from the same vehicles, as illustrated in the “Failure clue” of
each category in Fig. 4. Because op success rate represents
the proportion of executed operations among all requested
operations, continuously requested operations adversely affect
the reaction time and the proper execution of other operations
in the receiver. The Split operation is also common to the
LCS patterns. In category 1, the first reported message is a
Split request from v1 to v2. In categories 2 and 3, the
second messages are observed to request Split operation.
Based on these two common features, we concluded that the
operation protocol suffered from certain problems in the target
platooning SoS and that these problems were highly correlated
with the Split and Merge operations.

The suspicious interaction pattern in category 1 consists of
seven sequential messages, as illustrated in Fig. 4. The first two
messages record simultaneous requests of Split and Merge.
Line 1 indicates that the leader vehicle, v1, transmitted Split



Fig. 4. Extracted representative LCS patterns of interaction sequences.

request to its follower, v2. Line 2 indicates that the leader of
the rear platoon, v5, requests Merge to the front leader, v1.
Fig. 5 illustrates the failure pattern pertaining to category 1.
The problem in this scenario is that because of the request
for the Split operation, the front platoon leader in front of
v5 was changed from v1 to v2. However, even though the
rear front leader, v5, continuously requests Merge to v1, they
could not be executed. Thus, we concluded that one of the
observed failures is related to the operation request logic in
the protocol and this failure is triggered by the simultaneous
requests of Split and Merge.

In the category 2 pattern, two platoons are observed —
a front platoon with leader, v1, and a rear platoon with
leader, v5, — in the same lane. In this case, v5 transmitted
continuous Merge requests. However, in category 3, vehicles
v1 to v4 comprised a single platoon. One of its followers, v3,
transmitted the requests to v1 and v2.

Fig. 6 depicts the example execution flow corresponding to
category 2 pattern failure. In the pattern, one of the followers in
the front platoon, v2, requests a Leave operation as illustrated
in lines 1 to 3 in Fig. 4. The FollowerLeave operation
comprises three steps in the target platooning operation pro-
tocol [4] — dividing, leaving, and merging. First, since v2
requested Leave, v3 and v4 were divided into a new platoon,
in lines 4 to 8. Then, the rear platoon suddenly transmitted a
Merge request to the divided platoon. However, the divided
platoon needed to remerge with the original leader, v1, after
v2 leaves. The problem here is that the rear platoon leader,
v5, kept transmitting messages containing MERGE_REQ to the
intermediate leader, v3. We identified the reason behind the
continuous Merge requests by v5 to be the Optimal size
configuration. If the rear platoon size is smaller than the
Optimal size and the sum of the rear platoon size and
the intermediate platoon size is coincidentally equal to the
Optimal size, the rear platoon is observed to continuously
transmit Merge requests to the intermediate platoon.

The final LCS pattern is observed to begin with a Leave

TABLE II
EXAMINED FAILURE-INDUCING INTERACTION SCENARIOS IN VENTOS

Category Related Operations Detailed Failure Scenarios

Simultaneous Operation Request Split and Merge

Split and Merge

OptSizeChange and Merge

LeaderLeave and Merge

Configuration Conflict Leave and Merge

with Optsize

LeaderLeave

FollowerLeave

Single Operation Failure Leave and Merge
LeaderLeave

FollowerLeave

operation. Line 1 to 5 in category 3 in Fig. 4 illustrates that v2
requested Leave and that the rear vehicles, v3 and v4, were
divided into an intermediate platoon to execute the Leave
operation. A discriminative feature of this pattern was that the
leader of the intermediate platoon, v3, transmitted a Merge
request to the leaving vehicle, v2. Originally, it was expected
to send requests for v1 to remerge with the original platoon.
However, the v3 sends messages to both the leader, v1 and the
leaving vehicle, v2. To explain this case, we reproduced similar
cases in a simulation with different Optimal size settings.
We found that the redundant Merge requests were trans-
mitted to leaving vehicles irrespective of Optimal size
or Leader/Follower Leave settings. This failure case is
frequently observed when the FollowerLeave operation is
executed on a platoon consisting of more than three vehicles.

In order to answer the RQ2, we further analyzed each
IM within each category and subdivided the seven failure
scenarios from the existing categories. Detailed failure reports
of the seven scenarios were developed including the precon-
ditions, execution flows, illustrative examples, and extracted
patterns. This analysis demonstrates that SoS engineers with
limited knowledge can satisfactorily utilize the data provided
by the proposed approach. Table II presents the details of
the analysis. For instance, in Table II, three different cases
— simultaneous Split & Merge, OptSizeChange &
Merge, and LeaderLeave & Merge — may cause the
category 1 failure. We observed these concrete scenario cases
from IMs belonging to category 1. Similarly, we identified



two types of interaction failure scenarios — LeaderLeave
and FollowerLeave — in each of categories, 2 and 3. We
recorded seven failure scenarios in detail and compiled them
into failure reports for the platooning SoS considered in this
study. To the best of our knowledge, the aforementioned failure
scenarios have not been previously reported for VENTOS [4]
or any other related platooning simulator repository [14], [15],
[23], [24]. We expect the reported failure scenarios to be used
as testing benchmarks and to enrich fault knowledge databases
for general platooning systems. The detailed failure reports
have been included in our repository1.

C. Threats to Validity

Interaction Features. Even though we defined interaction
features based on a thorough investigation of various system
domains [18], [19], [20], [21], it is difficult to conclude that
the features considered in this study are sufficient to analyze
all possible types of failures in an SoS. Certain exceptional
cases of failure are induced by external root causes. For
instance, multiple collision-related failures are observed on the
part of Human-Driven Vehicles (HDVs) in the simulation of
the platooning SoS. However, since the platooning simulator
used in the case study, VENTOS only logs internal micro-
commands of platooning operations and does not log sensor-
level information, it cannot provide enough information to
identify external causes behind collisions. In future works, we
intend to generalize the interaction model and the simulator
to account for failures due to external factors as well.

Limited Evaluation Resource. To the best of our knowl-
edge, it is the first study to report interaction failures in
large-scale systems, especially platooning SoS. As a result,
appropriate testing benchmarks could not be obtained for
the platooning SoS being considered, to provide execution
logs, oracles, and data on failure scenarios and corresponding
causes. Thus, in our case study, we manually investigated
the outputs and the generated fault knowledge about the
interaction failures. We expect the fault knowledge obtained
in this study to be used as benchmarks or a general fault
knowledge for platooning SoSs in future studies.

We also used the op success rate property with 80% of
the empirical value. We examined studies that simulated and
verified platooning systems, but most of them used basic
testing criteria for platoons, such as maintenance of platoons
until the end of simulation [23], [24], or verification of a
single operation execution [14], [15]. Instead, we attempted to
generate cogent properties for the platooning SoS based on in-
ternational standards, such as ISO26262 [25]. However, certain
recent studies have reported that the existing standards, such as
ISO26262, focus on autonomous driving, and thus they cannot
fully meet the requirements of platooning SoS [13], [26], [27].
In this study, the op success rate was benchmarked based on
the Percentage of Successful Request (PSR) used in the testing
of the cloud system [28] and modified for application to the
simulation logs of the platooning system.

1https://github.com/abalon1210/StarPlateS
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Fig. 5. Example execution flow of category 1 pattern

V. RELATED WORKS

Recent studies on the analysis of root causes underlying
system failures have proposed several abstraction models and
techniques for various SoS domains, such as power plant sys-
tems, flight control systems, mass casualty incident response
systems, and underwater vessels [8], [9], [10], [11], [29].
These studies can be classified into two major categories —
those that diagnose fault patterns based on a fault knowledge
base and those that deduce suspicious components of a system
using testing/verification results.

Fault Diagnosis based on Fault Knowledge Base. The
majority of diagnosis techniques have applied machine learn-
ing techniques to identify fault patterns from the system state.
Kleyko et al. [10] suggested a matrix-based system model
to represent features of the power plant system. In order to
improve the accuracy of real-time faulty pattern matching,
the technique converts feature matrices of time, t, into hyper-
dimensional vectors and uses the hamming distance to calcu-
late the similarity between input system state vectors and fault
vectors within the knowledge base. Cai et al. [11] proposed
an Object-Oriented Bayesian Network (OOBN) to handle
uncertainty in the fault diagnosis process. Using OOBN model,
which is widely regarded as effective to solve uncertainty
problems, the authors developed fault diagnosis models for
a subsea production system. Yang et al. [29] proposed an in-
tegrated fault diagnosis technique that combines a lightweight



Fig. 6. Example execution flow of category 2 pattern

diagnosis with a Bayesian network-based approach to support
low-level and deep-level analysis on a flight control system.
They developed a framework to investigate the root causes
of failures by determining the most relevant description in
each case from the fault knowledge database. Most diagnosis
techniques classify failures by referring to an existing fault
knowledge database, and therefore, only focus on the accuracy
and efficiency of the diagnosis. The framework developed by
Yang et al. can cover the unknown fault situation, but it also
assumes a pre-built fault knowledge base.

SBFL Technique on Large-Scale Systems. Techniques that
focus on the determination of suspicious components of a
system generally apply the Spectrum-Based Fault Localization
(SBFL) technique. Shin et al. [8] applied the SBFL technique

Fig. 7. Example execution flow of category 3 pattern

to disaster response SoS. They modeled the SoS as a collabo-
ration graph that represents the participation and connection of
CSs. By injecting faulty components and connections into the
SoS, they localized suspicious components and connections
based on the execution logs. Arrieta et al. [9] also applied
the SBFL technique on the software product line. They used
software feature models, employing each feature as a single
spectrum in the SBFL. However, existing studies using the
SBFL technique suffer from such limitations — (1) inability
to utilize sequential interaction data from the logs, (2) infinite
combinations of interaction sequences.

The approach proposed in this study is capable of dealing
with the aforementioned issues. Firstly, our study provides a
systematic approach to analyze failure-inducing interactions
by analyzing interaction data obtained from logs and, sub-
sequently, mining suspicious patterns. In addition, it does
not require high-level domain knowledge and can deal with
unknown fault scenarios.



VI. CONCLUSION

In this paper, we proposed a pattern mining technique to ef-
fectively analyze interaction failures in an SoS. The technique
addresses two issues present in existing studies — inadequate
use of interaction data without proper algorithm and unknown
fault issues. To this end, we first defined an interaction model
for an SoS using the message features used in diverse systems.
We also proposed an interaction pattern mining algorithm to
isolate and categorize suspicious interaction sequences. By
applying the technique on the platooning SoS and investigat-
ing the output results manually, we identified three separate
categories of operation failures and seven detailed interaction
failure scenarios affecting the success rate of the platooning
operation without referring to any existing knowledge. We
expect the outputs of this study to be used as benchmarks or
a fault knowledge base of a general platooning SoS in future
studies. To the best of our knowledge, this study presents the
first attempt to determine precise interaction failure scenarios
based on concrete preconditions, execution flows.

We expect the scope of the proposed approach to be
extended in three directions. First, we plan to generalize the
interaction model to cover external causes in addition to inter-
nal fundamental causes. We will modify the target simulator to
enable sensor-level logging and update the interaction model
to utilize the relevant information for analyzing external root
causes. Secondly, we intend to improve the pattern mining
algorithm to categorize IMs and extract patterns more effec-
tively by applying certain heuristic metrics. Finally, we intend
to generate a testing benchmark of the platooning SoS by
defining further goal properties with oracles.
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