
박 사 학 위 논 문
Ph.D. Dissertation

사이버 물리 시스템 오브 시스템즈의 협력 실패

분석을 위한 컨텍스트 마이닝 기반 오류 분석 기법

Context Mining-based Fault Analysis of Collaboration Failures
in Cyber-Physical System-of-Systems

2023

현 상 원 (玄 相 原 Hyun, Sangwon)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology

박 사 학 위 논 문

사이버 물리 시스템 오브 시스템즈의 협력 실패

분석을 위한 컨텍스트 마이닝 기반 오류 분석 기법

2023

현 상 원

한 국 과 학 기 술 원

전산학부

사이버 물리 시스템 오브 시스템즈의 협력 실패

분석을 위한 컨텍스트 마이닝 기반 오류 분석 기법

현 상 원

위 논문은 한국과학기술원 박사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2022년 11월 28일

심사위원장 배 두 환 (인)

심 사 위 원 고 인 영 (인)

심 사 위 원 유 신 (인)

심 사 위 원 민 상 윤 (인)

심 사 위 원 지 은 경 (인)

Context Mining-based Fault Analysis of Collaboration
Failures in Cyber-Physical System-of-Systems

Sangwon Hyun

Advisor: Doo-Hwan Bae

A dissertation submitted to the faculty of
Korea Advanced Institute of Science and Technology in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Daejeon, Korea
November 28, 2022

Approved by

Doo-Hwan Bae
Professor, School of Computing

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and
Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This
includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.
I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.

DCS
20197043

현상원. 사이버 물리 시스템 오브 시스템즈의 협력 실패 분석을 위한 컨텍
스트마이닝기반오류분석기법.전산학부 . 2023년. 86+iv쪽. 지도교수:
배두환. (영문 논문)
Sangwon Hyun. Context Mining-based Fault Analysis of Collaboration Fail-
ures in Cyber-Physical System-of-Systems. School of Computing . 2023.
86+iv pages. Advisor: Doo-Hwan Bae. (Text in English)

초 록

CPSoS는 여러 CPS들이 상호작용하여 단일 시스템으로는 달성할 수 없는 상위 목표를 달성하고자 하는
시스템이다. 이런 복잡한 상호작용 과정에서 CPSoS의 실패가 발생하며, 이런 실패는 소프트웨어적 환경적
상호작용의 간섭에 의해 발생된다. 기존 연구들은 패턴 마이닝 기법들을 활용하여 시스템 실패를 분석하였
다. 하지만 기존 기법들은 협력 실패 분석에 있어서 (1) CPSoS logs를 위한 data model의 부재; (2) CPSoS
logs의연속적분석을위한주요기술적특징에대한한계; (3)단일로그에대한멀티패턴추출불가; (4)패턴
분석 후 버그 분석까지 기법의 부재라는 한계점들을 가진다. 본 연구에서는 이러한 한계점들을 해결하고자
CPSoS logs를위한컨텍스트모델을정의하고,해당모델로부터정확하게실패컨텍스트를마이닝하기위한
패턴 마이닝과 클러스터링 기법을 제안하였다. 마지막으로 추출한 실패 컨텍스트 패턴으로부터 코드상의
오류 위치를 추정하는 기법을 제안하였다. 여러 CPSoS를 대상으로 하는 실험에서 본 연구가 실패 컨텍스트
패턴 추출과 클러스터링에서 가장 높은 정확도를 보였다. 또한, 모든 실패 케이스에 대해서 가장 높은 오류
위치 추정 정확도를 달성하였다. 추가적으로, 실험 과정에서 기존에 발견되지 않았던 실패 사례와 버그들을
발견하였다. 본 연구의 향후 연구로 오류 위치 추정 기법의 두가지 확장에 대해 제시한다.

핵 심 낱 말 실패 컨텍스트 마이닝, 오류 위치 추정, 사이버 물리 시스템 오브 시스템즈, 퍼지 클러스터링

Abstract

A cyber-physical system-of-systems (CPSoS) tries to achieve prominent goals, such as increasing road
capacity in platooning that groups driving vehicles in proximity, through interactions between constituent
systems (CSs). However, during the collaboration of CSs, unintended interference in interactions causes
collaboration failures that may lead to catastrophic damage, particularly for the safety-critical CPSoS.
It is necessary to analyze the failure-inducing interactions (FII) during the collaboration and resolve the
root causes of failures. Existing studies have utilized pattern-mining techniques to analyze system failures
from logs. However, they have four limitations when applied to collaboration failures: (1) limited data
model to handle discrete and continuous logs generated from CPSoS; (2) limited coverage of main features
required to sequentially analyze the logs; (3) limitations on identifying multiple failure patterns in a single
log; and (4) an absence of an end-to-end solution from pattern analysis to the fault identification. To
overcome these limitations, we define a context model for CPSoS logs and propose an FII pattern mining
algorithm covering the main features of the sequential analysis, an overlapping clustering technique for
multiple pattern mining, and a pattern-based fault localization method. In experiments conducted on
several CPSoS examples, we found that the proposed approach achieved the highest context mining
accuracy and clustering precision. We also checked that the proposed localization method presented the
highest fault localization efficacy. We newly detected undiscovered failure scenarios and bugs in this
study. The findings of this study can facilitate the accurate analysis of collaboration failures.

Keywords Failure context mining, fault localization, cyber-physical system-of-systems, fuzzy clustering

Contents

Contents . i
List of Tables . iii
List of Figures . iv

Chapter 1. Introduction 1

Chapter 2. Related Work and Contributions of this Dissertation 4
2.1 Cyber-Physical System-of-Systems and Models 4
2.2 Implementation of Collaboration 6
2.3 Taxonomy of Interaction Failures 7
2.4 Graph Mining-based Fault Localization 8
2.5 Time-series/Sequential Knowledge Mining 9

2.5.1 Log Anomaly Detection and Analysis 9
2.5.2 Multi-Variate Time-Series Pattern Mining 10
2.5.3 Sequence Data Analysis 11
2.5.4 Concurrency Bug Analysis 11

2.6 Surveys on Existing Context Models & Similarity metrics . . . 12
2.6.1 Interaction Data Model in System Analysis 12
2.6.2 Environment Data Model in System Analysis 12
2.6.3 Similarity Calculation Methods 13

2.7 Experimental Framework for CPSoS: Platooning SoS 15
2.8 Contributions of this Dissertation 16

Chapter 3. Background 17
3.1 Spectrum-based Fault Localization 17
3.2 Longest Common Subsequence Pattern Mining 17
3.3 Fuzzy Clustering Algorithm . 18

3.3.1 Fuzzy Clustering . 18
3.3.2 Optimization Methods . 18

Chapter 4. Proposed Approach 20
4.1 Overall Process . 20
4.2 Context Model for CPSoS Failure Analysis 20

4.2.1 Interaction Message Sequence Model 21
4.2.2 Environment State Model 22

i

4.3 Context Mining . 23
4.3.1 Failure Context Pattern Mining Algorithm 23
4.3.2 Fuzzy Clustering for Failure Context Pattern Mining . . 30

4.4 Pattern-based Suspiciousness Calculation 33

Chapter 5. Experimental Dataset 36
5.1 Verification Framework for Platooning SoS 36

5.1.1 Statistical Verification Framework of Platooning SoS:
StarPlateS . 36

5.2 PLTBench Dataset . 39
5.2.1 Benchmark Generation Procedure 39
5.2.2 PLTBench Composition 41
5.2.3 Empirical Analysis of Platooning SoS 41
5.2.4 Statistics of the Dataset 47

5.3 Mass Casualty Incident-Response (MCI-R) SoS Dataset by
SIMVA-SoS . 49

5.4 Drone Swarming Dataset by SwarmLab 50

Chapter 6. Experiment 51
6.1 Experiment Design . 51

6.1.1 Research Questions and Evaluation Metrics 51
6.1.2 Benchmark Dataset . 54
6.1.3 Experiment Group . 56

6.2 Experiment Results . 56
6.2.1 Qualitative Analysis . 56
6.2.2 Quantitative Analysis . 59

Chapter 7. Conclusion 69

Chapter 8. Future Work 70
8.1 Localization Method for Distributed Multi-Statement Bugs . . 70
8.2 Localization Method for Implicit Collaboration Code 70

Bibliography 71

Acknowledgments in Korean 84

Curriculum Vitae in Korean 85

ii

List of Tables

4.1 Features of Communication Messages for Interaction Model 22

5.1 Overall setups of the empirical study . 42
5.2 Empirical analysis results on OSR verification property 44
5.3 Empirical analysis results on COLL verification property 46
5.4 OSR analysis statistics . 48
5.5 COLL analysis statistics . 49

6.1 Overall statistics of the target systems in experiment . 52
6.2 Top-K analysis results on the bugs of collaboration failures 65

iii

List of Figures

1.1 An example collision failure in platooning scenario . 2

2.1 Visualized CPSoS model defined in this study . 5
2.2 Categorization and examples of implementation of collaboration 6
2.3 Taxonomy of interaction Failures . 7

4.1 Overall Process of the Proposed Approaches . 20
4.2 Example interaction model of Platooning SoS . 21
4.3 Example abstracted LCS patterns extracted from the same message sequences but different

time windows . 25
4.4 Dynamic cosine similarity calculation for CPSoS environment state 28
4.5 Execution process of fuzzy clustering [1] . 31
4.6 Example of pattern-based fault localization . 34

5.1 Overall architecture of the verification framework. 36
5.2 An example of platoon configuration and scenario. 37
5.3 Generated platoons and Humman-Driven Vehicles (HDVs) in StarPlateS. 37
5.4 Overall process of generating the benchmark dataset for platooning SoS 40
5.5 Illustrative example of executions of failure class 2 in OSR analysis 43
5.6 Example code-level bugs and solutions identified in this study 45
5.7 Illustrative example of executions of failure class 6 in COLL 47
5.8 Illustrative example of Collaboration Protocol of MCI-R SoS in SIMVA-SoS 50

6.1 Failure mode coverage of CPSoS failures by the OSR and COLL analysis results 55
6.2 Example FII patterns and bug location in code . 58
6.3 PITW evaluation results . 59
6.4 PITW evaluation results of all failures scenarios in platooning and MCI-R SoS 61
6.5 Overlapping clustering precision accuracy evaluation results on MCI-R and platooning

SoS analysis results . 62
6.6 Context mining efficiency in log-scale time on OSR and COLL analysis 63
6.7 EXAM analysis results on bugs causing collaboration failures in platooning and MCI-R SoS 64
6.8 Hyperparameter importance analysis results . 68

iv

Chapter 1. Introduction

Systems are becoming more complex and massive according to the increasing requirements of society.
This trend is prevalent in the social and business aspects of smart factories [2], smart cities [3], and
intelligent platooning transportation systems [4]. These systems are called Cyber-physical system-of-
systems (CPSoS), which are large and complex physical systems that interact with constituent systems
(CSs) to achieve high-level goals beyond the single system’s capability. A platooning, where independent
vehicles from different vendors are driven in groups with close proximity, increases fuel efficiency and road
capacity that a single vehicle cannot achieve [5]. The goal achievements of a platooning SoS are based
on the interactions between CSs (i.e., vehicles). The interactions include the execution of platooning
operations, such as two platoons Merging into a platoon and a vehicle Leaving from a platoon.

SoS collaboration is defined by the concrete interaction processes of CSs to achieve SoS-level goals [6,
7] and implicit logic of indirect interactions with different CSs [8]. In this study, interaction denotes direct
and indirect information exchange in/around CPSoS and collaboration denotes a CS–CS interaction. In
fact, VENTOS [5] and ENSEMBLE [9] provide platooning collaboration protocols that define interaction
processes of vehicles (e.g., Leave, Merge). SIMVA-SoS [10] defines the collaboration processes of five
different CSs (e.g., SoS manager, firefighters) for MCI-R SoS. SwarmLab [11] also provides the bio-
inspired implicit collaboration algorithm and simulation of drone swarming based on MATLAB.

However, the design and development of the SoS collaboration are conducted under limited knowl-
edge owing to the independence of CSs. The limited knowledge denotes that CSs have black-boxed and
preexisting modules for their functionalities [12]. Thus, SoS developers do not have access to investigate
and modify the detailed implementation of the internal rules and structures of CSs. For example, in
platooning, the collaboration protocol is developed in a situation where the internal details of distance
or speed management of vehicles from different vendors are black-boxed. Consequently, the SoS col-
laboration protocol inherently contains uncertainty about the mutual effect between the protocol and
existing modules of CSs, and uncertainty of executions in various CS configurations. The uncertainty in
the collaboration protocol may cause unexpected failures during execution.

Collaboration failures in SoS are defined as the failures to achieve SoS-level goals that are caused
by unintended inter-functional interference during the intricate interactions [13]. Figure 1.1 describes
the deadlock-like failure of the platooning operations found in this study’s simulation using VENTOS
simulator. The scenario has two platoons: Platoon 1 with a size of three and Platoon 2 with a size of four,
where V1 and V5 are marked as the leaders of each platoon. The failure is caused by the simultaneous
requests of Merge from V5 and Leave from V7. In this situation, V5 continually ignores the Leave

from V7 because V5 is in the Merge operation. Moreover, because of the communication between V5
and V7, the wait time for the Merge is exceeded; thus, the Merge is also not properly executed in V5.
Consequently, both operations fail and are repeatedly requested. These failures caused by such complex
interactions are a significant challenge to achieving SoS goals and may lead to serious collisions.

SoS developers should resolve root causes (i.e., bugs) before deployment to prevent such failures.
Especially, failure occurrence context (i.e., failure context) should be provided to effectively analyze the
details of CPSoS failures and resolve the root causes. To effectively analyze the root causes of failures
in such intricate data, existing studies have focused on mining patterns for log anomaly detection [14,
15, 16, 17, 18, 19], time-series data analysis [20, 21, 22, 23], sequence data analysis [24, 25], and graph

1

Figure 1.1: An example collision failure in platooning scenario

mining-based fault localization [26, 27, 28, 29, 30, 31, 32, 33, 34, 35] for various systems. Concentrating on
the general fault analysis process, including fault detection, understanding on failure occurrence context
generation, root cause localization, root cause identification, our investigation of the applicability of
existing methods to CPSoS collaboration failures indicated that (1) their data models do not handle
both of the discrete and continous data generated in CPSoS execution; (2) they do not cover the major
features required to the sequential analysis of the discrete and continuous data; (3) have limitations
in terms of identifying multiple failure patterns in a single log; and (4) do not provide an end-to-end
solution from failure pattern analysis to the root cause identification.

First, discrete and continuous data are required to be analyzed in CPSoS collaboration failures. One
of the primary features of CPS is the utilization of continuous data from diverse types of sensors, such as
LIDAR [36], ultrasonic wave, wind, and temperature sensors. Moreover, CPSs communicate to execute
collaborative operations for achieving SoS-level goals. This communication is mainly conducted through
message-based data exchange. Both the discrete and continuous data generated from CPSoS execution
provide a valuable understanding of failure occurrence context of collaboration failures. However, existing
failure analysis techniques in various domains did not utilize a proper data model (i.e., data element)
that has the capability of analyzing message-based communication and environmental states.

Second, existing approaches are limited to dealing with the features of sequential analysis of the
CPSoS logs, such as serialization, temporality, multidimensionality, comprehensiveness, and series re-
lationship, so that serious information loss occurs when mining failure patterns. For example, CPSoS
communication logs consist of multidimensional communication messages involving heterogeneous data
types (e.g., contents, time). However, existing studies have mainly focused on the pattern mining of
single-dimensional or single-type data (e.g., numbers or text). They commonly use Euclidean or Lev-
enshtein distance for analyzing vehicle trajectory [22] and power plant sensor data [23]. The similarity
metrics of extant studies can only cover parts of multidimensional data. In addition, the interactions de-
fined in the collaboration protocol generally have time and order sensitivity [37, 38]. Although temporal

2

features, such as message intervals, are important factors for analyzing interactions, extant studies do
not fully consider them. Such information loss adversely affects the accuracy of the extracted patterns.
A pattern mining algorithm that covers the major features of interaction logs is needed.

Next, most pattern analysis studies concentrate on extracting a single pattern from a single data
element (e.g., a log). However, in SoS, one failure can cause other cascading failures [39, 40]. Thus,
multiple failure patterns can occur in a single log, and this should be considered in the pattern mining
and classification process to extract all the failure patterns involving edge-cases.

Finally, few studies provide an end-to-end solution to map the patterns to the root causes in the
collaboration code. Patterns are flagged logs that can effectively explain the occurrence of failures [16].
Developers need to localize the bugs in the collaboration code from the patterns to identify the root causes
of the collaboration failures. Because the cost required for developers to localize bugs remains expensive,
extant studies have argued the necessity of fault localization from patterns [16, 41]. Nonetheless, studies
proposing the localization methods from patterns to reduce the analysis cost of failures are limited.

To overcome these limitations, we propose a failure-inducing interaction (FII) pattern-based over-
lapping clustering and fault localization. The proposed approach provides four main contributions to
rectify the aforementioned issues in analyzing the root causes of CPSoS collaboration failures. First, we
define an Interaction and Environment Model (IEM) to handle the discrete message logs and continuous
sensor logs in CPSoS. Second, we proposed a Context-Aware Failure pattern-based Clustering Approach
(CAFCA) in this study. CAFCA-Longest Common Subsequence (CAFCA-LCS) pattern mining algo-
rithm that accurately extracts FII patterns by covering the main features of sequential analysis of the
CPSoS logs. Next, the CAFCA contains a Fuzzy-based overlapping clustering to classify and extract
all FII patterns that have occurred during the SoS execution. Finally, we provide a pattern-based fault
localization method that calculates the suspiciousness of collaboration protocol codes. Further, to facili-
tate compatibility with the limited knowledge of SoS, our approach only utilizes communicated message
logs and the collaboration protocol code as accessible inputs, without considering any data related to
the black-boxed codes, such as internal state changes of vehicles, in CSs.

We conducted an experiment in which we applied the proposed approach to a platooning SoS dataset,
PLTBench [42], MCI-R SoS data, SIMVA-SoS, and DroneSwarming simulation, SwarmLab. The results
obtained verified that our approach 1) generated the most accurate failure context patterns from the
platooning interaction logs among existing pattern mining techniques; 2) exhibited significantly high
overlapping clustering precision; and 3) achieved a 15% higher EXAM score on average compared with
spectrum-based fault localization (SBFL) methods, which indicates the higher efficacy of the debugging
cost reduction than SBFL methods. Moreover, we newly discovered a failure pattern and a bug that
causes frequent collisions of drones in SwarmLab.

The remainder of this paper is organized as follows: Section 2 works related to this research; Section
3 explains the background; Section 4 elucidates the proposed approach; Section 5 describes the experi-
mental dataset and simulator utilized in this study; Section 6 explains an experiment on the platooning
SoS; and Section 7 and 8 recommends directions for future works and concludes the study.

3

Chapter 2. Related Work and
Contributions of this Dissertation

2.1 Cyber-Physical System-of-Systems and Models

We have investigated existing studies concentrating on formal or semi-formal modeling of CPS [43,
44, 45, 46, 47, 48, 49, 50, 51], SoS [52, 53, 54, 55, 56, 57, 58, 59, 12, 60], and distributed systems [61, 62,
63, 64, 65, 66] to define the representation of CPSoS model in this study. We have found several common
points of the existing modeling studies for CPS, SoS, and distributed systems. First, most of the existing
studies utilized the graph-based representation of their models. In addition, this also indicates that all of
the models contain connections (i.e., interactions) between system instances. Next, the studies described
the attributes of capabilities and tasks in the models. Finally, most of the existing models assumed the
heterogeneous component modules in a system. The distinguishing attributes and features of existing
CPS models are the existence of continuous management attributes and timer attributes. As described in
Section 1, handling continuous sensor data is essential in the execution of CPS. Hence, I/O interfaces and
timer attributes are particularly depicted in CPS models. In distributed system models, multi-layered
graph models, such as functional and service layers, are one of the distinctive features. The studies for
distributed systems also intended to concentrate on the load-balancing issues of task allocation. In SoS
models, the limited knowledge assumption on the constituent systems (CSs) is the distinguishing feature
compared with CPS and distributed system models.

CPS Models. Drozdov et al. [43] formally defined a Syntax and Semantic of CPS model based
on IEC61499 standard. The syntax is defined by a set of function blocks, I/Os, and their connections.
The semantic defines the I/O examples by the function block types, followed by the description of
priorities for executable components. Zhou et al. [44] defined a hybrid UML-based CPS model. Halba
et al. [45] specified the spaces of IoT devices and capabilities and defined Relations between the IoT and
capability space. Calvaresi et al. [46] focused on the in-time property of CPS timing errors; thus, defined
a negotiation rule model including the initiator, contractor, task, and starting and finishing time. Zhao
et al. [47] proposed a modeling method for CPS that enables the analysis of failure propagation in CPS
based on the relevant relations and orders of input and output ports. Sun et al. [48] designed a five-layered
timed automata model for CPS and defined interactions and functions according to each layer. Lee et
al. [49] interpreted a CPS from the viewpoint of SoS. They defined discrete and continuous components
of the CPS model and their relations with the coupling of the components. Chen et al. [50] represented
a hybrid automaton model for CPS considering the uncertainty of internal actions in CPS. Bouheroum
et al. [51] described control agent and bigraphical reactive systems formalism that combines agent and
bigraphical reactive systems to deal with software, physical, and behavior levels in CPS. Existing CPS
models have common features that they defined I/O interfaces and timer attributes to effectively handle
the continuous data in CPS.

SoS Models. Luna et al. [52] defined a network graph model, consisting of a set of CSs in SoS
and a set of links that depict the communication element between the CSs. Akhtar et al. [53] modeled
a flood monitoring SoS based on the colored Petri-net (CP-Net). CP-Nets has a graphics language that
has the advantage of easy understanding of formalism. Moreover, Rehman et al. [54] elaborated the
CP-Net model for the flood monitoring SoS by defining the collaboration protocol and event models to

4

Figure 2.1: Visualized CPSoS model defined in this study

represent the integration of participating CSs. Fitzgerald et al. [55] applied a SysML-based modeling
approach to SoS. They modeled interaction behaviors in SOS based on the communication sequential
process formalism. Payne et al. [56] defined interface specification and contract modeling for CSs in major
incident response SoS. Wiecher et al. [57] proposed a hierarchical graph-based representation of general
SoS and CS structure, followed by defining an SoS scenario specification. Bryans et al. [58] applied
SysML-based modeling to the travel agent problem for SoS architecture modeling. Zhou et al. [59]
provided an SoS development context for design space modeling and implementation and integration
patterns, such as one-directional information change, bi-directional information change, control, and
negotiation for SoS architecture. Baek et al. [60] proposed a meta-model for general SoS and an example
of MCI-R SoS applying the meta-model. In the existing SoS models, the limited knowledge assumption
on the constituent systems (CSs) is commonly utilized.

Distributed System Models. Shchurov et al. [61] defined multi-layered graph models for func-
tional, service, logical, and physical architecture layers. The multi-layered graph model is composed of
a non-empty set of system components, a non-empty set of component-to-component connections, and
a non-empty set of component-to-component inter-layer mapping for each layer. Srivastava et al. [62]
proposed a timed automata-based modeling of distributed software-defined networks (SDN). The SDN
contains the main activities of time passing, transactions, and synchronized transitions. The SDN model
mainly focuses on analyzing load balancing and security issues of distributed systems. Kubiuk et al. [63]
also utilized graph-based modeling to represent an efficient orchestrator for distributed systems. Bin et
al. [64] proposed a graph-based reliability calculation method for distributed systems by the topologi-
cal sorting algorithm. They calculated the reliability value for each component in distributed systems.
Beschastnikh et al. [65] provided a graph-based search and global ordering algorithm for distributed
systems. The global ordering algorithm chronologically orders the events conducted in different hosts.
After the global ordering of the events, the graph-based search algorithm extracts specific patterns, such
as a request-response pattern, and broadcast pattern. They applied the approach to the bully leader
election and distributed two-phase commit transaction systems. Neves et al. [66] also proposed a graph
pattern search algorithm and global ordering method based on log messages and kernel-level operations.
The common points of the studies for distributed systems are (1) they commonly defined the model with
hierarchical network models; and (2) their study concentrated on the analysis of load balancing in the
execution of distributed systems.

CPSoS Model. Through the investigation of existing CPS, SoS, and distributed system models, we
defined a general CPSoS model that contains common features of CPS and SoS and has distinguishing
features from general distributed systems. Figure 2.1 described the abstracted structure of CPSoS
consisting of SoS-Goals, Tasks, CPSs, Allocation, and Collaboration. SoS-Goals is a set of high-level

5

Figure 2.2: Categorization and examples of implementation of collaboration

goals that can be achieved by the CPSoS. Tasks is a set of defined tasks required to be accomplished to
achieve or maintain the SoS-Goals. CPSs contain a set of constituent CPSs in CPSoS. A CPSoS and
a single CPS are modelled as follows:

CPSoS = (SoS-Goals, Tasks, CPSs, Allocation, Collaboration)

CPS = (ComponentModels, Inputs, Outputs, Integration, Capabilities)

A CPS is composed of five attributes in this study. ComponentModels denotes software component
modules in CPS, such as function blocks, services, or automata. Inputs indicates values from sensors
or initial states of the components involving the data from other components while Outputs represents
the actions of actuators and data to other components in CPS. Integration defines the connection of
components, followed by the definition of transitions and priority rules in CPS. Capabilities literally
indicates the attribute of feasible performance or behaviors conducted by the CPS. The Capabilities

of each CPS is utilized in defining Allocation relation between Tasks and CPSs in a CPSoS model.
Allocation defines the task allocation to a specific CPS or a set of CPSs that can effectively achieve
particular tasks in CPSoS. Collaboration determines concrete approaches to accomplish the allocated
tasks by a single CPS or a set of CPSs. Because our study is focusing on the failures of Collaboration

during the execution of CPSoS, we will explain the details of Collaboration in the next subsection.

2.2 Implementation of Collaboration

We have investigated existing studies that implemented collective behaviors or collaboration of
CPSs or IoTs [8, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. Particularly, Rossi et al. [8] classified
existing existing implementation methods of collective behaviors of complex systems in 10 categories,
such as state machines & behavior composition, bio-inspired algorithm, and centralized optimization
algorithm depicted in Figure 2.2. This classification can be elaborated by two different dimensions:
Interactive and Directive dimension; and Explicit interaction and Implicit interaction dimension. For
example, centralized optimization algorithm is a directive implementation of collaboration where the
example of the centralized algorithm is an integration rule of autonomous driving systems [70]. In
the directive types of collective behaviors, there would be no autonomous interaction between each
component, but exist only the order-based execution. Therefore, we focused on the interactive types of

6

collaboration which can be subdivided by Explicit and Implicit interactions. An explicit collaboration
indicates the interaction process by the direct data exchange. For example, platooning collaboration
protocol [5] based on the message-based communication is one of the examples of explicit collaboration.
An implicit collaboration defined an autonomous rule for component systems, primarily utilizing indirect
interactions through environmental objects. Representative examples of the implicit collaboration are
drone swarming algorithms [67, 68, 69, 70, 71, 72, 73] and other bio-inspired algorithms for complex
systems [74, 75, 76, 77, 78]. In this study, we utilized three experimental dataset for covering both of the
explicit and implicit collaboration in the evaluation section. MCI-R and platooning SoS are examples of
the explicit collaboration. Drone swarming algorithm is a type of implicit collaboration.

2.3 Taxonomy of Interaction Failures

We have investigated how the existing studies defined the interaction of systems in failure analysis
and structured a taxonomy of interaction failures by this survey. We searched existing studies that focused
on interaction failures in diverse domains. We defined the taxonomy of the interaction failures by the
bottom-up approaches based on the example failure scenarios in the existing studies. The taxonomy of
interaction failures are defined in Figure 2.3.

Figure 2.3: Taxonomy of interaction Failures

There exist three major types of interaction failures in the proposed taxonomy: human-related
interaction failures, software interaction failures, and software-environment interaction failures. We have
found the software-software-environment interaction failures in the empirical analysis of platooning SoS,
but did not add the cases into the taxonomy, since the failures could be too domain-specific. We will
add the failure classes into the taxonomy after extending the target domain to other CPSoS scenarios.

First, human-related interaction failures literally denotes the failures caused by the developers and
users in the development and deployment phases [79]. The individual errors indicates mistakes, slips,
lapses, and deliberate violations [79]. The working environment and development group errors are caused
by the over-confidence, personnel fatigue and stress, poor task allocation, and human communication
failures [80]. These errors are occurred in the development phase of software. The social errors are
caused by the user-user interactions or multiple users-software interactions. This type of error includes
malicious users, bugs relating to complex interactions between users and software [81].

Second, software interaction failures are caused by the interactions between software modules/subsystems
to other modules/subsystems. Most of existing studies that focused on interaction failures targeted the
cascading failures, which denote one module or systems’ failure cause other modules or systems’ fail-
ures [39, 13, 82, 40, 83, 84, 85, 86, 87]. In the studies, they defined the interactions between software to
the propagation relationship of the failures. Communication failures can be classified into the communi-
cation message error and protocol error. Message error indicates the mess loss or damage, incorrect data

7

in a message, message structure conflict [79, 88]. The protocol error denotes the logic error, especially
the violation of expected message orders, non-occurrence of expected events(messages) on expected time,
incorrect logic, missing logic, wrong implementation [79]. The last type of software interaction failures
are resource conflict failures. Direct resource conflict, a.k.a synchronization error, is caused by the si-
multaneous access to specific data. Data race, deadlock, atomicity violation, livelock, and starvation are
included in this interaction failure type [79, 89, 90, 91, 92, 93, 94].

Finally, software-environment interaction failures are caused by the indirect influence by the environ-
ment or other software modules. We have found few examples in the software-environment interaction
failures [95], which illustrate the interference of autonomous emergency breaking and adaptive cruise
control modules in autonomous driving vehicles.

After building the taxonomy of interaction failures, we utilized the concrete examples and taxonomy
when defining the context models of CPSoS failure analysis.

2.4 Graph Mining-based Fault Localization

Graph mining-based fault localization (GMFL) aims to extract the failure occurrence context (i.e.,
failure context) and suspicious locations of the root causes of the failures. GMFL techniques mainly
focused on code/function-level failure context; thus, most of the techniques defined the context model
based on the control flow graph (CFG) [26, 27, 28, 29, 30, 31]. Gaber et al. [26] proposed a CFG-based
node and edge ranking method to calculate not only the suspiciousness of each statement, but also the
suspiciousness of the transition between the statements. Parsa et al. [27] defined an weighted CFG-based
spectrum-based fault localization (SBFL) to extract the discriminative CFG from the failed and passed
test results. Zhong et al. [29] proposed a supervised convolutional neural network (CNN)-based fault
location prediction technique. When building the CNN model that can predict the fault location from
the failure data, they generated the CFG from java code and converted the CFG to Word2Vec format
to train the CNN model. Henderson et al. [30] proposed a depth-first search(DFS)-based CFG mining
technique to extract the critical sub-graphs according to suspicious fault behaviors. Chu et al. [31] applied
the GMFL techniques on concurrent program. They defined interthread control flow path models that
can link memory access patterns that occurred frequently in the failing executions to better diagnose
the concurrency bugs. Major limitations of the CFG-based GMFL techniques on CPSoS failure analysis
are (1) limited failure mode coverage to software-software interaction failures in CPSoS failure modes;
(2) code/function-level context models are difficult to be applied in the black-box/gray-box constituent
systems in CPSoS; (3) CFG-based GMFL techniques directly face the state/path explosion problem
due to the increasing complexity of the CFG on CPSoS failure modeling. Furthermore, the last two
studies [30, 31] did not provide the causality linking methods (i.e., suspiciousnes calculation methods)
from context models to the code-level root causes.

A few studies [32, 33, 34, 35] defined their own function-level context model to effectively analyze
the software failures. De et al. [32] defined the code hierarchy model and integration coverage model
to extract the contextual information of failures. Particularly, the integration coverage model used the
method call pairs to relate the caller and callee methods. Based on the models, they extracts the most
suspicious methods and the code blocks that should be inspected at each reltaed method. Yu et al. [33]
applied a bayesian network to fault localization. They defined the bayesian network-based program
dependence graph to calculate the probability of each program entity in specific failure scenarios. Zhang
et al. [34] proposed an abstract syntax tree model-based fault localization to link the bug reports to the

8

faults in source files. He et al. [35] formally defined the fault influence networks that mainly utilize the
method call pair data. Based on the fault influence networks, they calculates the improved suspiciousness
scores of each statement. These studies do not have the state/path explosion problem due to the model
complexity, but they still have (1) limited failure mode coverage on CPSoS failures and (2) difficulties on
applying limited knowledge characteristics of CPSoS. Additionally, the techniques mainly focusing on the
association rule mining for code/function-level elements. Association rule mining provides only limited
information to understand the failure context of software-software interactions, software-environment
interactions, and software-software-environemnt interactions.

2.5 Time-series/Sequential Knowledge Mining

We have investigated several studies that focused on log anomaly detection and distinguished pattern
extraction in various domains. We examined the applicability of the techniques, including their essential
assumptions, for CPSoS failure analysis.

2.5.1 Log Anomaly Detection and Analysis

The majority of the log anomaly detection and analysis studies have applied clustering techniques.
Landauer et al. [14] proposed a cluster evolving technique to effectively detect security attacks. Their
technique parsed each line of logs for each time window, evolved clustering results of the prior time
window, and applies forecasting methods to several types of attack scenarios. Schmidt et al. [15] also
suggested a technique to detect critical time spans of security attacks in Cyber-Physical System logs.
They integrated multiple time-series data analysis methods, such as Euclidean distance and Dynamic-
Time Warping (DTW) with K-means clustering algorithm to detect suspicious time spans of security
attacks. Wu et al. [96] applied an association mining technique to reversely engineer the software be-
haviors and their transitions based on the behavior logs. Finally, Amar et al. [16] introduced two
log-flagging techniques: LOGLINER, and LogFaultFlagger. Those techniques are based on the term
frequency-inverse document frequency (TF-IDF) approach. They applied the TF-IDF approach to each
log line and calculated the uniqueness of the log lines in LOGLINER. LogFaultFlagger added fault and
bug counts on the LOGLINER by calculating the log line similarity using cosine similarity. These studies
basically used text-based logs for anomaly detection and analysis. Nevertheless, they have commonly
utilized conventional similarity metrics, such as Euclidean distance which can not be applied to the
high-dimensional message sequences. Their studies basically did not consider any interactions during
anomaly detection or analysis, and they did not consider the existence of multiple bugs or patterns in
a single time window or log file. Lastly, their studies assumed highly-detailed logs that included details
of behaviors, state-transitions, or failures. Witn an SoS, it is difficult to expect the well-ordered logs
of CS-level behaviors or state-transitions, because the CSs are regarded as the black-box or gray-box
systems. Thus, in our study, we fully utilized the observable execution traces (i.e., communication logs)
in interaction failure analysis.

Other studies generated anomaly patterns from system sensor data by proposing clustering ap-
proaches. Liu et al [20] proposed a k-means clustering approach for detecting faults in a solar power
system. They defined a DTW metric for the assessment of element similarities. Madicar et al. [97] sug-
gested an approach that extracts faulty motifs among system sensor data. Motif refers to a commonly
observed sequential data pattern. Rodpongpun et al. [98] proposed a search-based clustering approach

9

with clustering operations of addition, creation, and merging. The technique searched the optimized
order of clustering operations on specific time-series data. Lastly, Soleimany et al. [21] proposed LCS -
based clustering approaches that enabled the extraction of LCS from sensor time-series data. The major
limitation of these studies is that they mostly used Euclidean distance-based similarity metrics which
are not applicable to the nominal and high-dimensional communication logs in SoS. Additionally, they
did not consider the overlapping clustering for extracting multiple faulty patterns. Furthermore, these
studies did not consider the process of identifying root causes of failures after the pattern extraction.

Several studies have applied supervised approaches to detect anomalies from logs. Sauvanaud et
al. [17] proposed a supervised anomaly detection technique, followed by the monitoring and data pro-
cessing of cloud services. They applied several supervised learning approaches, such as Bayesian network
and neural networks for anomaly detection. Du et al. [18] suggested an integrated anomaly detection
technique comprising Long-Short Term Memory-based log-key anomaly detection model, workflow gener-
ator, and parameter-level anomaly detection model. The study firstly parsed each log by N-gram model,
then applied the LSTM-based and parameter-level approaches to predict the probability of security at-
tacks. Zhang et al. [19] proposed a supervised anomaly detection technique for unstructured log data,
which contains previously unknown log sentence or noises in log. The study majorly focused on noise
processing and unknown log sentence management during the anomaly detection process. The major
limitation of these supervised approaches is that they assumed the well-defined fault knowledge of the
target domain for training, such as concrete security attack patterns. The goal of our study was to reduce
the overall analysis cost of interaction failures, wherein the final deliverable of the analysis would be the
fault knowledge of the interaction failures. Therefore, the techniques requiring the fault knowledge are
not appropriate for this study.

2.5.2 Multi-Variate Time-Series Pattern Mining

Pattern extraction studies can be classified into two categories based on the target data types:
time-series and sequence data. The primary difference between the categories is that sequence data is
nominal and unstructured, whereas time-series data consist of numerical values. Several studies extracted
patterns from various time-series data for interpreting in-depth analysis on the data. Choong et al. [22]
and Zhou et al. [99] respectively applied fuzzy k-means clustering to spatial vehicular trajectory data
and household electricity consumption data, respectively. Their studies extracted meaningful patterns
from both data and provided new implications for analysis on the data. Zhang et al. [100] proposed
a hierarchical periodic pattern mining approach to effectively analyze real-world animal tracking data.
Lastly, Kleyko et al. [23] applied hyperdimensional computing-based learning techniques to the fault
analysis for power plant sensor data. The primary limitation pertaining to apply these pattern mining
approaches in CPSoS is that all time-series data analysis studies used similarity metrics based on the
Euclidean distance. Hence, the metrics cannot be applied to calculate similarities of nominal and high-
dimensional interaction message sequences. Furthermore, all studies, except the study from Zhou et
al. [99], did not provide overlapping clustering, which is necessary for analyzing multiple patterns from
a single execution log.

Other time-series pattern analysis studies consider multiple variables together to investigate the
failures of systems [101, 102, 103, 104, 105]. Hallac et al. [101] proposed a multi-variate time-series
(MTS) clustering method for multi-sensor system such as autonomous vehicles. They segmented the
multi-variate time-series data and clustered the data by calculating the independence of subsequences
by the Markov random field. Sürmeli et al. [102] proposed a variable order markov models to cluster the

10

multi-variate time-series data. They mainly utilized the averaging and principal component analysis for
dimension reduction and cluster the discretized data. Li [103] also utilized common principal component
analysis to reduce the dimension of the data and generate the initial prototype clusters. Then, the
technique searched the optimal cluster set by the reconstruction and error calculation processes. D’Urso
et al. proposed two MTS techniques: observation-based clustering that analyzes the MTS data in unit-
slices, variable-slices, and time-slices [106]; Dynamic time warping and partitioning around medoids-based
clustering that have strengths on outlier effects by the trimming process [105]. These existing MTS studies
have common points with CPSoS failure analysis in that they need to consider the dependency of values
from multiple variables. However, MTS studies still have limitations on calculating the similarities of
interaction message sequences and on the application of overlapping clustering for analyzing multiple
failures occurred in a single log.

2.5.3 Sequence Data Analysis

SPADE is one of the commonly used sequence mining algorithms in various domains [25, 107, 108].
SPADE algorithm generates unique ids from the dataset and calculates the frequency of the pair of
the unique ids and data elements with internal databases. We applied the SPADE algorithm to SoS
interaction logs by generating unique ids of sequence items using contents, sender and receiver roles, such
as SPLIT_REQ-Leader-Foll ower.

We also examined a recent base study [24] that analyzed failure-inducing interaction patterns in
platooning SoS. This highly relavant study first defined interaction models for SoS, which abstracted
the message-based interaction data from communication logs. Then it suggested an LCS -based pattern
mining approach that used the interaction models. The study extracted three LCS patterns of interaction
failures and manually analyzed seven failure-inducing scenarios for platooning SoS. The study presented
an initial idea for analyzing interaction failures in SoS, by applying LCS -based pattern extraction process.
However, the study simply applied the existence of LCS as a similarity metric in pattern mining, but did
not completely utilize the temporal features of interaction sequences. For instance, the study evaluated
the identities of two messages without considering the delivery intervals between previous messages.
Additionally, the base study did not take into account various time window sizes in LCS generation.
The omission of time-related information in the pattern mining process adversely affected the quality of
extracted patterns and increased the probability of false-alarm patterns. Furthermore, the base study was
fully dependent on the manual fault identification process without providing any code-related information
about the corresponding failures.

2.5.4 Concurrency Bug Analysis

Furthermore, we investigated concurrency bug analysis studies that have a common point with
SoS failure analysis in resolving failures caused by the unintended interactions of system components
(i.e., threads). Cai et al. [109] suggested a concurrency bug prediction technique by modeling branch
events and checking the event feasibility. Li et al. [110] presented a thread-safety violation detector,
TSVD in the testing phase by applying happens-before (HB) analysis. Liu et al. [111] proposed an
automated concurrency bug detection technique based on the incremental control-flow graph (CFG)
update. However, the extant studies are dependent on the CFG of target systems, which cannot be
utilized in SoS analysis due to the state-explosion problem [10]. Additionally, existing studies focused
on analyzing the shared memory conflict, but in SoS, we focused on analyzing specific sequences of

11

interactions between CSs. We concluded that the concurrency bug analysis studies have a different scope
with SoS failure analysis.

2.6 Surveys on Existing Context Models & Similarity metrics

To define the appropriate context model for representing the CPSoS failures, we have investigated
the existing context models in various system domains.

2.6.1 Interaction Data Model in System Analysis

The goal of the interaction data model analysis is to define the interactions in various systems and set
the scope of interactions. First, we investigated how the interactions are defined in various domains and
standards, such as CPS [95, 112, 113], agent-based systems, web-services [114], and telecommunication
systems [115, 116].

In automotive domains, which is one of the representative examples of CPS, several studies defined
interactions as “The activation of two or more features sending requests to the mechanical processes
(physical actuators) that create contradictory physical forces." [95, 115, 113]. The studies abstracted
the interactions of internal modules of autonomous vehicles based on the feature-driven development,
where a feature denotes a collection of units of functionality [95]. They modelled the interactions as a
vector of features, such as containing the feature elements in the system or environment. Especially, they
classified the interactions in autonomous vehicles into two main features: by the conflict type and by the
duration. First, by the conflict type, they classified the interactions into direct interactions and indirect
interactions by the other system components or environments. Second, by the duration, they classified
the interactions into immediate interactions and temporal interactions.

The studies focused on the interactions on telecommunication systems and web services also utilized
the feature-based modeling of interactions. In telecommunication systems, they defined interactions as “a
situation where a combination of these services behaves differently than expected from the single services’
behaviors, is called service interaction" [116]. They also classified the emergence level of interactions into
logical level, abstract architecture, and concrete architecture. Cameron et al. [115] also considered the
user values and shared resources as features in the interaction representation. Juraez et al. [113] defined
the interactions in web services as “a feature invokes or influences another feature directly or indirectly".
They also characterized the key features of the interactions to goal of features, allocated and available
resources, assumptions of features, interface, and concurrency.

Based on this analysis of the interaction data model in various system domains, we defined the
interaction model for CPSoS failure analysis in Section 4.2.

2.6.2 Environment Data Model in System Analysis

To cover not only the software-software interaction failures, but also the software-environment and
software-software-environment interaction failures, we have investigated the existing model definition of
environment in system analysis process [117, 118, 119, 120, 121, 122]. In summary, the majority of the
existing studies defined the environment surrounding the system to the vector (matrix) of sensor data in
a system. Choong et al. [117] defined the environment of intelligent transportation system as a chrono-
logically arranged vector of multiple sensor data. Harada et al. [118] defined the automatic aquarium
management system to a high dimension vector which can deal with both discrete and continuous data.

12

Lee et al. [121] abstracted the environment of the ship engine system into a vector with 10 sensor dimen-
sions. Serdio et al. [122] also modelled the environment of multi-sensor network system as a vector of
sensors. Fontes et al. [119] abstracted the states of the gas turbine system as a matrix of sensor values.
huang et al. [120] also generated environmental state matrix from vectors of multi sensor data from an
independently operated data sources.

Based on the analysis of the existing environmental state representation models, we defined the
environment model for CPSoS failure analysis in Section 4.2.

2.6.3 Similarity Calculation Methods

Principal Component Analysis Similarity metric (SPCA index)

The principal component analysis similarity metric (SPCA index) was utilized for many MTS mining
cases [123, 124, 125, 119]. The SPCA index measures the similarity level between two matrices (MTS
items) based on principal components (eigenvectors) of each matrix. The SPCA index is obtained
from the square of the cosine values for all combinations of their first p principal components from two
matrices [124]. p is determined by how many percentages of the data the principal components can
represent. X and Y are the two matrices (MTS items). The SPCA index of X and Y is defined as
SPCA(X,Y) = 1

p

∑p
i=1

∑p
j=1 cos

2θij [126], where θij is the angle between the ith principal component
of X and the jth principal component of Y . The SPCA index can be applied when lengths of time
series are inconsistent. Since the dimension can be reduced to number of principal components through
principal component analysis (PCA), the SPCA index is suitable to high-dimensional data. However, it
makes harder to interpret processed data after PCA.

Cosine similarity

Cosine similarity is commonly used in high dimensional positive data sets (such as text mining).
It was also applied for the cases including fault identification in power systems [127] and knowledge
extraction in energy consumption data [128]. Cosine similarity measures the similarity of two vectors by
computing the cosine of the angle between the vectors. Given two vectors (time series), Xi(i = 1, ..., n)

and Yj(j = 1, ..., n), the cosine similarity of X and Y is defined as follows: cos(θXY) = X·Y
∥X∥∥Y ∥ =∑n

i=1 Xi×Yi√∑n
i=1 (Xi)

2×
√∑n

i=1 (Yi)
2
. θXY denotes the angle between the vectors X and Y , and n is the length of

time series. The cosine similarity has a linear time complexity. However, the cosine similarity cannot
deal with the cases that lengths of two time series are different. The cosine similarity is based on the
directions of vectors, so the magnitudes of vectors are not considered.

Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is one of the most common methods for similarity measure in time
series clustering [129] and was adopted in [130, 131, 15]. DTW is trying to find the alignment, which is
making each point of a time series correspond to another point of the other time series, to minimize the
difference of two time series. Thus, DTW can deal with the temporal drift (drift in time dimension) and
has better accuracy than Euclidean distance. The DTW distance is the minimum cost of the warping
path to best match two time series. Given two time series, Xi(i = 1, ...,m) and Yj(j = 1, ..., n), the DTW

13

distance of X and Y is defined as follows: D(Xm, Yn) = E(Xm, Yn) +min

D(Xm−1, Yn−1)

D(Xm−1, Yn)

D(Xm, Yn−1)

. m and

n are the lengths of time series X and Y , respectively. The function E(a, b) represents the Euclidean
distance between two points a and b. The time complexity of DTW is O(n2). The DTW distance can
be applied on time series of different length. In the case when the domain information is missing, the
DTW distance measure can be a good candidate to use since the classification accuracy of DTW was
experimentally shown to be comparable to those of LCSS, EDR and ERP [132].

Short Time Series (STS) distance

The short time series (STS) distance was proposed by Möller-Levet et al. [133] to address the problem
that intervals between time points varied. The STS distance is a shape-based method and measures the
difference of slopes between data points. The slopes are calculated by the relative change of amplitude
and time difference between data points. A time series dataset is denoted as Xi

j(i = 1, ...,m; j = 1, ..., n),
where m is the number of time series in the data set, and n is the length of time series. tk denotes the
time that the kth data point was sampled in time series. The STS distance of two time series a and b

is defined as STSab =

√∑n−1
k=1 (

Xb
k+1−Xb

k

tk+1−tk
− Xa

k+1−Xa
k

tk+1−tk
)
2

. The STS distance have a time complexity of
O(n). The STS distance is suitable for the case when the sampling intervals are various, but it may be
not suitable for long time series. Moreover, the STS distance is sensitive to scaling [129].

Maximum Shifting Correlation Distance (MSCD)

Two similarity measurements, Maximum Shifting Correlation Distance (MSCD) and the second
distance of MSCD (MSCD-2nd), were proposed by Jiang et al. [134] aiming to deal with both the
temporal and amplitude drifts. Since the correlation coefficient does not affect by the amplitude drift,
this method finds the maximum correlation coefficient of two time series by temporally shifting time
series. A time series data set is denoted as Xi

Ti
(i = 1, ...,m;Ti = {ti1, ..., tini

}), where m is the number
of time series in the data set, and ni is the length of time series Xi

Ti
. Ti + s = {ti1 + s, ..., tini

+ s},
where s is the shifting time constant. The MSCD of two time series a and b is defined as MSCDab =

1− max
s∈{−k+u,...,k−u,k}

correlation(Xa
Ti−s, X

b
Ti
). The correlation function represents the Pearson correlation

coefficient distance. k = min{[na

10], [
nb

10]},where [] is a round function. if k < 50, u equals to 1, otherwise
u = [k

50]. The MSCD distance matrix is denoted as D = (dab)m×m = (MSCDab)m×m. The MSCD-2nd
of two time series a and b (MSCD-2ndab) is the Euclidean Distance (ED) between the ath and bth
column vectors in the distance matrix D. The MSCD and MSCD-2nd both have a time complexity of
O(n). In the experiments, Jiang et al. evaluated the accuracies and efficiencies of the MSCD, MSCD-2nd,
and 8 other similarity measures, including ED, ARMA [135], LCSS, DTW, fastDTW [136], SOM [137],
GARCH [138], and GEV [106]. The DTW and the MSCD-2nd had much better clustering accuracies
than other measures. Furthermore, the MSCD-2nd had the best clustering accuracy. In view of time
consumption, the ED, MSCD and MSCD-2nd had the least time cost.

14

2.7 Experimental Framework for CPSoS: Platooning SoS

One of the important and difficult issues on CPSoS failure analysis is the lack of available open
benchmark data wherein target systems should otherwise satisfy the characteristics of SoS. Furthermore,
there exists no official standard for SoS examples (e.g., platooning SoS).

Several previous studies have provided tools for verifying the platooning system for specific goals,
such as safety and resilience [139, 140]. Vieira et al [139] provided an integrated simulator consisting of the
robot operating system (ROS) based simulator [141] and OMNET++ to test a communication network
model of the platooning system. In the present work, the network frequency of a communication channel
was used as test input to verify the maintenance of a generated platoon. Kamali et al. [140] focused
on the spatial and timing constraints of the platooning system using an agent-based model with an
integrated simulator of TORCS and MATLAB/Simulink [142]. However, they did not use the simulator
to verify their model; instead, they used the UPPAAL model checker with a formal model. Both studies
used a single platoon and did not consider the environment in the simulation and verification. Vieira et
al. considered infrastructural settings in the system by changing the network frequency, but this work
may not have sufficiently covered the uncertainty factors in the platooning system. In addition, their
verification techniques were not compatible with verifying the platooning system in scalable situations.

In other previous studies [143, 144, 145, 146], formal models of the platooning system were designed
and verified using existing tools, such as UPPAAL and MATLAB VnV Toolbox [147]. Elgharbawy et
al. [143] verified the safety of an automated truck driving system by including unexpected environmental
situations. They added stochastic properties to environmental sensing modules and exhaustively verified
the system in several scenarios. However, their definition of a scenario was different from ours. They
used a scenario to represent the parameter settings in a vehicle. We infer that they used a single
vehicle to verify their system. Achrifi et al. [144] also focused on environmental uncertainty issues. They
mainly described the advantages of the MATLAB VnV framework for verifying advanced driving assistant
(ADAS) models. In this study, they also used a single ADAS model and did not include environmental
factors in testing it. Mallozzi et al. [145] proposed a formal model for selecting platoon leaders in
UPPAAL. They used diverse scenarios with different numbers of vehicles and platoon operations to
verify the system in UPPAAL. Although they partially covered the internal uncertainty of the platooning
system, they only used a single platoon and homogeneous vehicle types in the verification and didn’t
consider environmental factors. Meinke [146] verified a platooning system in scenarios in which the
leaders’ speed was changed. Their research focused on the scalability of the platooning system and
simulated different numbers of vehicles in a platoon. This research only used a Speedchange event in the
scenarios, thus they locally cover the internal uncertainties of the system.

To the best of our knowledge, no previous study has simultaneously used various numbers of platoons
and vehicles with stochastic environmental objects in the verification. Previous studies only partially cov-
ered the uncertainties in the platooning system. Moreover, most of the previous studies used exhaustive
verification techniques that could not bypass the state-explosion problem. Based on this investigation, we
developed a platooning SoS simulation and evaluation framework that covers the internal and external
uncertainties using various factors and applies the SPRT algorithm, which alleviates the state-explosion
problem. The details are explained in Section 5.1.

15

2.8 Contributions of this Dissertation

In this dissertation, we aims to propose an approach to effectively analyze the CPSoS failures. To
achieve the research goal, we investigated log anomaly detection, time-series data analysis, sequence data
analysis [24, 25], and graph mining-based fault localization studies for various systems. Concentrating on
the general fault analysis process, including fault detection, understanding on failure occurrence context
generation, root cause localization, root cause identification, our investigation of the applicability of
existing methods to CPSoS collaboration failures indicated that (1) their data models do not handle
both of the discrete and continous data generated in CPSoS execution; (2) they do not cover the major
features required to the sequential analysis of the discrete and continuous data; (3) have limitations
in terms of identifying multiple failure patterns in a single log; and (4) do not provide an end-to-end
solution from failure pattern analysis to the root cause identification.

To overcome these limitations, we propose a failure-inducing interaction (FII) pattern-based over-
lapping clustering and fault localization. The proposed approach provides four main contributions to
rectify the aforementioned issues in analyzing the root causes of CPSoS collaboration failures. First, we
define an Interaction and Environment Model (IEM) to handle the discrete message logs and continuous
sensor logs in CPSoS. Second, we proposed a Context-Aware Failure pattern-based Clustering Approach
(CAFCA) in this study. CAFCA-Longest Common Subsequence (CAFCA-LCS) pattern mining algo-
rithm that accurately extracts FII patterns by covering the main features of sequential analysis of the
CPSoS logs. Next, the CAFCA contains a Fuzzy-based overlapping clustering to classify and extract
all FII patterns that have occurred during the SoS execution. Finally, we provide a pattern-based fault
localization method that calculates the suspiciousness of collaboration protocol codes.

We conducted an experiment in which we applied the proposed approach to a platooning SoS dataset,
PLTBench [42], MCI-R SoS data, SIMVA-SoS [10], and DroneSwarming simulation, SwarmLab [11]. The
results obtained verified that our approach 1) generated the most accurate failure context patterns from
the platooning interaction logs among existing pattern mining techniques; 2) exhibited significantly high
overlapping clustering precision; and 3) achieved a 15% higher EXAM score on average compared with
spectrum-based fault localization (SBFL) methods, which indicates the higher efficacy of the debugging
cost reduction than SBFL methods. Moreover, we newly discovered a failure pattern and a bug that
causes frequent collisions of drones in SwarmLab.

16

Chapter 3. Background

3.1 Spectrum-based Fault Localization

To identify failure-inducing interactions based on the data present in logs of failures, we propose
a pattern mining-based fault localization technique. A fault localization technique pinpoints suspicious
locations in a program, such as statements, that merit the programmers’ attention [148]. Program
locations that appear to be erroneous are called suspicious locations. Corresponding to any set of test
cases, including failed cases, a list of suspicious locations in the program is produced.

The SBFL techniques utilize code coverage corresponding to each test case to determine suspi-
cious locations. Code coverage, which is also called the program spectrum is an execution trace of a
program [148] with respect to a specific input. The basic concept of SBFL techniques for determining
suspicious locations is that the more program location is executed in failed cases, the more it is considered
suspicious.

In the case of large and complex CPSoS, identification and correction of failures are effort-intensive
tasks. Since fault localization techniques help engineers to analyze the root causes and occurrence
contexts of failures, SBFL techniques have been used for localizing faults in large-scale complex systems,
such as a disaster-response SoS and a software product line [149, 150]. In CPSoS, understanding the
failure occurrence context is the most important process to resolve the failures. Therefore, we focused
on the graph mining-based fault localization techniques for CPSoS failure anlaysis.

3.2 Longest Common Subsequence Pattern Mining

Longest common subsequence (LCS) algorithm finds the longest subsequence that two strings have
in common, which is often used to analyze gene sequence data in bioinformatics [151] and sensor data
in system engineering [22, 21]. Let ∃m,n ∈ N≥0, xm, yn ∈ Char, sm = x1, x2, x3, ..., xm and sn =

y1, y2, y3, ..., yn be Strings having lengths m and n, respectively. The function LCS : String × String →
String maps two input strings to the longest common subsequence involved in both strings. The LCS

function can be defined as follows:

LCS(sm, sn) =

ϕ, if m = 0 or n = 0

LCS(sm−1, sn−1)⊕ xm, if xm = yn

maxLenS(LCS(sm, sn−1), otherwise

LCS(sm−1, sn))

(3.1)

The function maxLenS : String × String → String selects a longer string between the two input
strings. If the length of both strings is zero, the function LCS outputs an empty string. The operator
⊕ implies the concatenation of the operands. When two input strings have a common character, the
function recursively concatenates the character to LCS(sm−1, sn−1). We extend the LCS function in
Section 4.3.1 to be applied to SoS message sequences.

17

3.3 Fuzzy Clustering Algorithm

3.3.1 Fuzzy Clustering

Classical clustering methods are famous and widely used, but they have some limits since real life
data sets are noisy, incomplete, and overlapping. To handle such uncertainty, many uncertainty based
models have been proposed over the years. Among the models, the most popular fuzzy logic is introduced
by Zadeh [152]. In contrast to classical hard sets where an element may be in a set or may not be in
it, fuzzy set used membership of elements in it so that an element can belong to many clusters at same
time.

3.3.2 Optimization Methods

Fuzzy C-means (FCM) algorithm [1] is inspired from the classical c-means algorithm. The member-
ship vector which only contained 0 or 1 is replaced to membership matrix which contains a value between
0 and 1. Membership matrix U is n by k matrix, where n is number of the dataset and k is number
of clusters. The final target is to minimize objective function Jm(U,C) =

∑n
i=1

∑k
j=1 u

m
ijd

2
ij , which is

related to membership value u and distance d. Membership value is powered by m, which is a hyper-
parameter to choose fuzziness. This hyperparameter is also called fuzzifier. It gets fuzzier when m gets
larger, and 2 is mostly used for m. Distance d is Euclidian distance between data and cluster center. The
algorithm steps are as follows: 1) Initialize Membership matrix U randomly. 2) Update Cluster centers
using ci = (

∑m
j=1 u

m
ijxj)/(

∑m
j=1 u

m
ij). 3) Update Membership values using uij =

∑k
l=1(dij/dlj)

2(m−1).
4) Calculate Objective value. 5) Repeat 2, 3, 4 until Objective value is less than threshold. To sum up,
FCM has strength that it is simple, and always converges. However, it needs long computational time
and it is sensitive to initial guess and noise. Further, there is one more limitation at FCM. Because FCM
uses Euclidian distance between data and cluster center, it was considered that all data features have
equal importance. However, it is not true in many cases.

Xizhao Wang et al. [153] introduced Feature-Weight learning Fuzzy C-means (WFCM) algorithm
to have an information about importance. Feature weight is defined as w = w1, w2, . . . , wd, ∀wi = [0, 1],
so that it can express how much the feature is important. FCM is the case when all feature weight
is 1. It also suggests the new measurement, called similarity measure ρ

(w)
ij = 1

1+β∗d(w)
ij

∈ [0, 1] to find

appropriate feature weight. Here, β is normalizing factor to make average of ρ
(1,1,...,1)
ij (= ρij) is 0.5.

WFCM considered feature weight as d
(w)
ij =

√∑n
k=1 w

2
k(xik − xjk)2 to calculate distance rather than

Euclidian distance. Then, two data having phi more than 0.5 is considered similar, and less than 0.5
is considered different. Therefore WFCM tried to choose w to maximize similarity measure if phi is
larger than 0.5, and minimize if smaller than 0.5. The detail algorithm is as follows: 1) Calculate
FCM’s similarity measure and normalizing factor β. 2) Calculate w to minimize cost function E(w) =∑k

i=1

∑k
j=1 ρ

(w)
ij (1−ρij)+ρij(1−ρ(w)

ij) using gradient descent. 3) Follow FCM’s algorithm using weighted
distance. Overall, WFCM introduced feature selection techniques. It made better performance than
FCM, but since it needs calculation for feature wight, it has larger time complexity.

To solve this large time complexity problem, Anter et al. [154] introduced Fast Fuzzy C-means
(FFCM) algorithm. This algorithm decreased the number of distance calculation by eliminating mem-
bership values which are smaller than a hyperparameter threshold T . When T is 0.42, it showed it
is saving more than 80% time regardless of number of clusters. However, it made bigger error when

18

number of clusters gets bigger. Additionally, research has also been conducted to apply fuzzy clustering
algorithm to sequential data. The paper Fuzzy Clustering of Sequential Data introduced Kernel and Set
Similarity Measure to find similarity of sequential data. This method does not only consider the content
of sequential pattern, but also takes an account of the order of items. So they could assume (a, b, c) and
(d, a, b) are more similar than (a, b, c) and (a, e, f, g, b), even though their length of longest subsequence
is both 2.

In our study, we applied the fuzzy clustering to failure context mining process and defined the new
fuzzy algorithm for CPSoS failures. The details are elucidated in Section 4.3.1.

19

Chapter 4. Proposed Approach

4.1 Overall Process

Figure 4.1: Overall Process of the Proposed Approaches

The overall process of the propose approach is described in Figure 4.1. The main inputs of the
approach are the execution logs of the CPSoS simulation with Pass/Fail tags attached by the external
goal property checker module, and the CPSoS collaboration protocol code. The proposed approach
consists of two processes: context mining and localization. In the context mining process, there exist two
main steps that (1) context model generation and (2) clustering & pattern mining. The output of the
context mining process is a set of clusters of failed context models with the representative failure patterns
for each cluster. Based on the generated patterns, the localization process calculates the suspiciosuness
of each statement in the collaboration protocol code. Therefore, the propose approach returns the two
main outputs: failure context patterns for CPSoS failures and suspiciousness ranking list for each failure
context pattern. The details for each step in the process are elucidated in the following sections.

4.2 Context Model for CPSoS Failure Analysis

In order to analyze interaction failures in CPSoS, we define the interaction-environment model
(iem) that captures the communication data and environmental states of the target CPSoS based on the
execution logs as follows:

20

Let t ∈ T be a time value, and for every vector v, v[x] be the x-th element of the v,

Msg ∋ msg = ⟨t, continuity, synchronization, sender_id, sender_role, receiver_id, receiver_role, content⟩,
(4.1)

M ∋ mn = (msgi)
n
i=1,where n ∈ N, msgx[0] < msgy[0] for 1 ≤ x < y ≤ n, (4.2)

State ∋ state = ⟨t, envar1(t), envar2(t), envar3(t), ..., envarh(t)⟩, where envarj(t) : R→ R, h ∈ N,
(4.3)

E ∋ el = (statek)
l
k=1,where l ∈ N, statex[0] < statey[0] for 1 ≤ x < y ≤ l, (4.4)

tag ∈ {false, true}, (4.5)

Iem ∋ iem = (mn, el, tag) (4.6)

envarj(t) maps input time t to the value of the observable sensor variable, envarj at the time t.

Figure 4.2: Example interaction model of Platooning SoS

4.2.1 Interaction Message Sequence Model

The interaction model (m) represents interaction logs as sequences of messages between CSs. The
definitions of a message and a message sequence are as follows:

Msg ∋ msg = ⟨time, continuity, synchronization, sender,

receiver, content⟩,

M ∋ mn = msg1,msg2,msg3, ...,msgn,

where mn is a finite sequence of messages of length n. Each msgi in the sequence is a tuple consisting
of continuity, synchronization, sender, receiver, content, and time. For example, Figure 4.2 shows
a sequence of communication messages between vehicles in a platooning SoS. In the example scenario,
V 1 wants to leave Platoon1, thus it sends a message to V 2. The message, msg1, sent to V 2 is (TC,

21

Sync, V 1, V 2, LEAVE_REQ, 00:00:01), which implies temporary (TC) and synchronous (Sync) communi-
cations from V 1 to V 2 with LEAVE_REQ command at 00:00:01. The message sequence from LEAVE_REQ

to SPLIT_START can be written as m4=msg1, msg2, msg3, msg4. In this study, we consider the time
windows of interaction logs in pattern mining. Hence, mn is expanded to mt

n, where t denotes the onset
time of a time window.

As it is described in Section 2.6, to extract interaction features in an SoS, we refer to existing
studies that identify features of interaction and communication in various domains, such as autonomous
vehicles [95], telecommunication systems [116], and web services [115, 114].

Table 4.1 depicts the features that are used to represent message-based interactions and their types.
The Continuity feature determines whether a sender sends a single message (Temporary Communication,
TC) or a stream of messages (Continuous Communication, CC). The Synchronization determines whether
a delivered message is synchronous (Sync) or asynchronous (Async). The Continuity and Synchronization
features together capture the concurrency properties among the CSs. The Initiating/Receiving Entity
refers to the sender and the receiver of any message. The Content feature describes the contents of a
message, while Start Time, End Time, and Delay are used to record the sending and receiving times of
the message in the IM . Example values of the Content feature include 17 micro-commands defined in a
platooning operation protocol [5], such as LEAV E_REQ, LEAV E_ACCEPT . The Content feature
can be used to assess certain types of conflicts, such as interface conflicts and goal conflicts between CSs.
The Initiating/Receiving Entity and Content features can be used to assess direct and indirect resource
conflicts during the system operations by analyzing the relationships of Initiating Entity and Receiving
Entity with Content [95].

Table 4.1: Features of Communication Messages for Interaction Model

Feature Type Example

Continuity
Enumeration of Continuous
Communication (CC) and
Temporary Communication (TC)

TC

Synchronization
Enumeration of Synchronous
(Sync) and Asynchronous (Async)

Sync

Initiating Entity String CS_A

Receiving Entity String CS_D

Content Message Operation
Request

Start Time Time 2019/12/24:000000

End Time Time 2019/12/24:000159

Delay ms 159

4.2.2 Environment State Model

The environment state model (e) is also defined by the survey on the existing environment state
models in various system domains. As it is described in Section 2.6, the majority of the existing models

22

use the vector and matrix-based context model for representing environmental state. Therefore, in our
approach, we extend the vector model to be compatible with the dynamic reconfiguration feature of
CPSoS. In CPSoS, constituent CPSs can join into or leave from the CPSoS by its authority. This makes
the dynamic reconfiguration of CPSoS structure and it causes the dynamically changing dimension of
sensor variables in the environment state vectors for each time. For example, at time t1, the vector
dimension size is four, but at time t2, the dimension of the CPSoS environment state vector could be
three, four, and five. To cover the unique features of CPSoS, we define the environment state of the
CPSoS as a chronologically ordered sequence of vectors that contain the sensor values for specific time t.

4.3 Context Mining

4.3.1 Failure Context Pattern Mining Algorithm

Since our context model (iem) consists of the two independent types of data sequence: m and e, we
defined two pattern mining algorithm for each data sequence.

LCS-based Message Sequence Pattern Mining

With the generated M as input, the primary goal of this approach is to extract accurate CPSoS
failure patterns. The algorithm is focused on covering the multidimensional and temporal features of
interaction logs so as not to cause information loss in the process of pattern mining.

First, to deal with the multidimensionality, we extend the string-based LCS function in Equa-
tion (3.1) to the longest common message subsequence (LCMS) function based on the definition of
message sequences mn in Section 3.2. We define the function LCMS : M ×M → M which maps two
input message sequences, pk and qn, to the longest common message sequence as follows:

LCMS(pk, qn) ≜

ϕ, if k = 0 or n = 0

LCMS(pk−1, qn−1)⊕msgpk,

if MCT (msgpk,msgqn)

maxLenM(LCMS(pk, qn−1)

, LCMS(pk−1, qn)) otherwise

(4.7)

The function maxLenM : M × M → M selects the longest message sequence among the two inputs.
In Equation (3.1), the comparison of two characters forming the strings is self-explanatory. However,
a special function is required to determine the identity of two messages. Hence, we define a message
comparison with time function, MCT , which enables us to check the identity of two messages. Let us
assume prep, preq ∈ N≥0, which denotes the previously matched message ids in pk and qn, respectively.
Function MCT : Msg×Msg → B maps two input messages to the Boolean value of the message identity

23

as follows:

MCT (msgpk,msgqn) ≜

(msgpk.sender = msgqn.sender) prep = 0

∧ (msgpk.content = msgqn.content) or

∧ (msgpk.receiver = msgqn.receiver) preq = 0

∧ (msgpk.continuity = msgqn.continuity)

∧ (msgpk.synchronization = msgqn.synchronization)

(msgpk.sender = msgqn.sender)

∧ (msgpk.content = msgqn.content)

∧ (msgpk.receiver = msgqn.receiver)

∧ (msgpk.continuity = msgqn.continuity) otherwise

∧ (msgpk.synchronization = msgqn.synchronization)

∧ ((msgpk.time−msgpprep .time)

−(msgqn.time−msgqpreq .time) ≤ delay_threshold)

(4.8)

The MCT function not only covers the multidimensionality, but also covers the temporal features of
interactions. The function compares the delivery intervals of two messages, to exclude the situation in
which certain subsequences occur at significantly different time intervals. Assume that msgp10 contains a
1-s interval with its previously matched message and that msgq20 contains a 20-s interval. Even if all other
values of msgp10 and msgq20 are the same, determining that two messages having significantly different
delivery intervals are identical may adversely affect the accuracy of extracted patterns. We, therefore,
divide the process of checking message identities into two cases. If no message is matched during the
LCS pattern extraction, we check only the identity of the message contents, such as sender, content,
and receiver. Otherwise, we further check whether the difference of delivery intervals of the messages is
within the margin of the delay_threshold.

The proposed LCMS function in Equations (4.7) and (4.8) can extract the LCS of interaction
messages between any two message sequences. However, it is difficult to conclude that the proposed
function always extracts the most “critical" message subsequence that accurately contains the information
needed to identify the root causes of failures. The term “critical" indicates the quality of information
owned by a specific FII pattern regarding SoS failures. Because the LCS -based algorithms start from the
“firstly matched" instance, LCS patterns may include completely meaningless parts prior to the critical
points.

Figure 4.3 depicts two example LCS patterns extracted from the same message sequences with
different time windows. Example pattern 1, starting from 53.03 sec, consists of repetitive MERGE_REQ

messages and a few other messages. Otherwise, pattern 2, starting from 85.00 sec, contains various
messages, such as LEAVE_REQ, SPLIT_REQ, and MERGE_REQs between V1, V2, V3, and V5. Pattern 2
provides a more critical understanding of the failure that V5 repetitively requests Merge to V3 when V3
is still in the Leave operation between V2 and V1.

To accurately extract the critical FII patterns, we define the algorithm that extracts LCS patterns
according to several time windows of input message sequences and selects the most “critical" LCS among
the LCS s. Let t1, t2 ∈ T = {t ∈ R≥0 | t is a time window starting time}, M be the set of message
sequences, and n, k ∈ N be the length of message sequences. We define the sub-message sequences

24

Figure 4.3: Example abstracted LCS patterns extracted from the same message sequences but different
time windows

starting from t1 and t2 as follows:

pt1k ≜ msgp1 ,mspp2,msgp3 , ...,msgpk

qt2n ≜ msgq1,msgq2,msgq3, ...,msgqn

To properly select the most “critical" LCS among the generated ones, we define the parameters
needed to evaluate the quality of the LCS s as the number of content types in the LCS and their lengths.
We assume that an LCS is more “critical" than other LCS s if it contains more Content types and its
length is shorter than others, so that it contains more informative FII sequences with fewer redundant
messages. This definition is based on the priority among the contexts and symptoms of SoS failures.
The context denotes the conditions and execution flows in which failures occur. Symptoms denote the
results of failures and are frequently used in fault detection techniques as failure indicators [17, 18, 19].
However, our study focuses on the analysis of failures, especially identifying root causes. During this
analysis process, the failure occurrence context provides more meaningful knowledge to help understand
the root causes. Therefore, we prioritize the LCS s with various types of interaction contents providing
more contextual information.

Let k, n ∈ N. We define T-LCS and TIME-LCS as follows:

T -LCS(pk, qn) ≜
⋃

t1,t2∈T

LCMS(pt1k , qt2n) (4.9)

TIME-LCS(pk, qn) ≜ argmax
m∈T -LCS(pk,qn)

NumContentTypes(m), (4.10)

where function NumContentTypes : M → N maps an input LCS to the number of independent
content types contained in messages belonging to the given LCS. When the algorithm calculates T-LCS,
it generates a set of LCS s with each sub-message sequence of pk and qn by a discrete time window
starting at t1 and t2 in T . As described above, the function, TIME-LCS, first selects an LCS among
T-LCS by the number of content types in Equation (5). If the number of content types is the same, we
use the lengths of LCS s as a tie-breaking rule. The algorithm 1 describes the details of executing the
proposed TIME-LCS pattern mining algorithm. MsgSim in Equation (4.11) is defined as the similarity
calculation metric for message sequence data.

MsgSim ≜
len(TIME-LCS(clusterj .pattern, mi))

len(clusterj .pattern)
(4.11)

Subjects of the MsgSim include the LCS pattern in an existing cluster, clusterj .pattern, and a given

25

message sequence mi. The MsgSim metric calculates the LCS-based sequence similarity between the mi

and clusterj .pattern.

26

Algorithm 1: CA-LCS Algorithm for iem models
Input : iemi, iemj ⊂ Iem

Output: iem ⊂ Iem

1 T ← {t0, t1, ..., tk}, a set of starting times of time window;
2 LCSTable ← [][];
3 LCS_set, common_env_state ← ∅;
4 prev_msgi, prev_msgj ← Null;
// Extract LCS by each subseq of messages & env states by starting time

5 for u in T do
6 for v in T do
7 mu

ni
← subsequence of mni

from time u;
8 mv

nj
← subsequence of mnj from time v;

9 for x ← 0 to len(mu
ni
) by 1 do

10 for y ← 0 to len(mv
nj
) by 1 do

11 if x == 0||y == 0 then
12 LCSTable[x][y] = 0;
13 end
14 msg_identity = MessageIdentityChecking(mu

ni
[x],mv

nj
[y],

prev_msgi, prev_msgj , delay_threshold);

15 env_sim, env_state =EnvSimilarityCalculation(mu
ni
[x],mv

nj
[y],

iemi.eli , iemj .elj , env_time_window_threshold);

16 if msg_identity == True and env_sim ≥ env_sim_threshold then
17 LCSTable[x][y] = LCSTable[x-1][y-1] +1;
18 prev_msgi = mu

ni
[x];

19 prev_msgj = mv
nj
[y];

20 common_env_state.add(env_state)

21 else
22 LCSTable[x][y] = MAX(LCSTable[x][y-1], LCSTable[x-1][y]);
23 end

24 end

25 end
26 LCS_set.add(LCS_of_LCSTable) // by reverse-traversing LCSTable

27 end

28 end
29 return iem = (ARGMAX(LCS_set, NumContentTypes()), common_env_state, False);
30

// Count the number of contents in an LCS

31 Function NumContentTypes(mn):
32 types ← ∅;
33 for i ← 0 to len(mn) by 1 do
34 if !types contain mn[i][5] // 5th elem: contents

35 then
36 types.add(mn[i][5])
37 end

38 end
39 return len(types); 27

Dynamic Cosine Similarity Calculation for CPSoS Environment State

The algorithm 2 describes the detailed execution of the proposed message identity checking function
and environment state similarity calculation function. As it is described above, the main issue for
environment state pattern mining and similarity calculation is that the dimension of target vectors is
not fixed, but changed by the dynamic reconfiguration of CPSoS. Therefore, we decided to extend the
existing cosine similarity algorithm for vector similarity calculation to the similarity calculation of vectors
with different dimensions.

Figure 4.4 explains the detailed process of the proposed dynamic cosine similarity calculation
method. The dynamic cosine similarity calculation algorithm comprise of three steps: (1) discretization
of the sensor variable data; (2) sliding-based vector similarity calculation; (3) selection by the threshold
values. Discretization indicates that the sensor values should be transformed to the discrete values based
on the domain specific knowledge. For example, in Figure 4.4, the discretization step is to transform
the distance sensor values to the discrete values of one to five, which denote the qualitative distance
classification from “very close" to “very far". The classification standard for each sensor is decided by
the platooning inter/intra-distance setting in the target domain simulator.

The second step, sliding-based vector similarity calculation, aims to apply the cosine similarity to
different dimension of vectors and to select the biggest value among the sets of the possible similarity
values. The algorithm bases on the shorter length vector and calculates the cosine similarity values
between the vector with the shorter length and the sliced vector of the longer vector by the size of the
shorter one. In Figure 4.4, the example vectors have length five and four, respectively. Then, the length
four vector is utilized as the base vector and the cosine similarity of the base vector and the sliced longer
vectors by the base size are calculated. In the example, there exist two slices in the long vector, orange
and green-colored vectors. From the generated similarity values, the algorithm sets the max value to the
similarity of the two vectors with different dimensions.

Figure 4.4: Dynamic cosine similarity calculation for CPSoS environment state

The last step is the selection of similar environment states based on the threshold values. As it is
described above, an environmental state is defined as a sequence of sensor value vectors. The sliding-
based vector similarity calculation is for calculating the similarity of the two environment sensor vectors;
thus, we need to calculate the similarity of two environment states. Equation 4.12 defines the similarity

28

of the two environment states by the average value of similarity value of the constituent sensor vectors.

EnvSim(envi, envj) = AV G(Dynamic_cosine_sim(envi, envj)) (4.12)

The environment pattern is selected by the env_sim_threshold value; thus, the environment states that
exceed the env_sim_threshold value are added to the environment state in a pattern.

Algorithm 2: Message identity and environmental state similarity calculation function

// Message identity checking function

1 Function MessageIdentityChecking(msgx,msgy, prev_msgi, prev_msgj , delay_threshold):
2 msg_identity ← Null;
3 msg_identity = msgx[2] == msgy[2] ∧msgx[4] == msgy[4] ∧msgx[5] == msgy[5];

// 2nd elem: sender_role, 4th elem: receiver_role, 5th elem: contents

4 if prev_msgi != Null and prev_msgj != Null then
5 msg_identity =

msg_identity ∧ (ABS{(msgx[0]− prev_msgi[0])− (msgy[0]− prev_msgj [0])} ≤
delay_threshold);

6 end
7 return msg_identity;

8

// Environmental state similarity calculation function

9 Function EnvSimilarityCalculation(msgx,msgy, eli , elj , env_time_window_threshold):
10 s← env_time_window_threshold;
11 env_sims, env_set← ∅;
12 surrounding_envi = eli .split(msgx[0]− s,msgx[0]);// Before s sec from msgx

13 surrounding_envj = elj .split(msgy[0]− s,msgy[0]);
// 0th elem: message delivery time

14 for state_i in surrounding_envi do
15 for state_j in surrounding_envj do
16 if len(state_i) < len(state_j) then
17 for x ← 0 to len(state_j)− len(state_i) do
18 env_sims.add(cosine_similarity(state_i, state_j.split(x, x+ len(state_i));
19 end
20 env_set.add(state_i);

21 else
22 for x ← 0 to len(state_i)− len(state_j) do
23 env_sims.add(cosine_similarity(state_j, state_i.split(x, x+ len(state_j));
24 end
25 env_set.add(state_j);

26 end

27 end

28 end
29 return MAX(env_sims), env_set;

29

Discriminative Pattern Mining

Even though we proposed a fuzzy clustering approach to extract discriminative patterns from the
failed execution logs in the following section, the clustering approach only concentrated on the failed
logs except for the passed execution logs of CPSoS collaboration. In this section, we extended existing
discriminative pattern mining algorithms [155, 156] to iem models for CPSoS to increase the accuracy of
the pattern mining process by utilizing both of the passed and failed execution logs. The discriminative
algorithm is also utilized as a similarity calculation metric in the fuzzy clustering process.

The primary implication of the discriminative pattern mining is to maximize the difference of oc-
currences in different item groups. We defined the discriminative pattern mining function, Disc, as
follows:

Disc(Patternk, Iem) =
Supp(Patternk, Iempassed)

Supp(Patternk, Iemfailed)
,

Supp(Patternk, Iem) =
Occ(Patternk, Iem)

|Iem|
,

Occ(Patternk, Iem) : Occurrence of Patternk in group Iem,

where the Occ function calculates the number of occurrence of Patternk in a passed or failed group of
iem. The proposed functions are utilized as a selection metric for candidate patterns in the pattern
update process in fuzzy clustering depicted in Figure 4.5.

4.3.2 Fuzzy Clustering for Failure Context Pattern Mining

Based on the similarity calculation and pattern mining algorithm, we proposed a fuzzy clustering
for failure context pattern mining technique to classify different failure context and extract the represen-
tative patterns from each cluster. We applied the fuzzy clustering algorithm that has strengths on the
overlapping clustering and of less influence by the random input orders. Figure 4.5 depicts the general
execution process of the fuzzy clustering. A data element of the fuzzy clustering in this study is a single
iem model. The first step of the fuzzy clustering is initialization. In the proposed fuzzy clustering, we
selects C random iem models as initial patterns. Next, the approach calculates the similarity values
between the patterns and all iem models. Based on the similarity values, membership values are calcu-
lated. Then, the iems are clustered to each cluster by the membership values and the patterns are newly
extracted for the updated groups of iems. Finally, the algorithm checks the end-condition of the fuzzy
clustering by using the objective function. If the end-condition is not satisfied, the steps from similarity
calculation to end-condition checking are repeated.

The fuzzy clustering mainly consists of the similarity metric function and objective function. Based
on the described similarity calculation and pattern mining algorithm above, we define the similarity
function, Sim, and dissimilarity function,Diss, as follows:

Let C be the given number of clusters and N be the total number of iem elements,

Cluster = {clusteri|clusteri ⊂ Iem, i ∈ N≤C} (4.13)

Pattern = {patterni|patterni is a LCS pattern contained in all iemj ∈ clusteri, j ∈ N≤|clusteri|}
(4.14)

Sim(iemi, iemj) = p ∗MsgSim(iemi.m, iemj .m) + q ∗ EnvSim(iemi.env, iemj .env) (4.15)

Diss(iemi, iemj) = 1− Sim(iemi, iemj) (4.16)

30

Figure 4.5: Execution process of fuzzy clustering [1]

The objective function, J , for the proposed fuzzy clustering is defined as follows:

J =

C∑
j=1

N∑
k=1

up
kjDiss(patternj , iemk)

2 +

∑C
j=1

∑N
k=1

∑N
l=1 u

p
kju

p
ljDiss(iemk, ieml)

2∑N
k=1 u

p
kj

(4.17)

with following the constraints:
C∑

j=1

ukj = 1 (4.18)

The former part of the function J is based on the objective function from fuzzy c-means (FCM) clus-
tering [1]. The objective function evaluates the distance between patterns and data element, iem; thus,
make the similar patterns and iems closer. The latter part of the function J is introduced by the recent
study focusing on the fuzzy clustering of sequential data [157]. The algorithm is newly attached to
FCM objective function in this study. The latter part of J indicates the pair-wised analysis of the data
element, which means that the algorithm makes the two similar iems closer. This pair-wised similarity
evaluation is necessary in this study, because the patterns are the subsequence of the iems,the patterns
already have baseline similarity to specific iems; thus, this may result in the biased clustering results

31

and highly dependent clustering results by the initially selected patterns.
In the fuzzy clustering algorithm, the important point is that the algorithm should converge the

cluster sets to the optimal set of clustering results. Therefore, we proved the following theorem that
membership function, u, converges the objective function J to (local) optimal value by the Lagrangian
function.

Theorem 4.3.1. The optimal solution of Equations (4.17) and (4.18) is:

ukj =
D(k, j)

1
1−p∑C

i=1 D(k, i)
1

1−p

, where (4.19)

D(k, j) = Diss(patternj , iemk)
2 +

∑N
h=1,h̸=k u

p
hjDiss(iemh, iemk)

2∑N
h=1,h̸=k u

p
hj

(4.20)

Proof. The Lagrangian function with respect to U ∋ u with Lagrangian multiplier, λk, is

L(u) =

C∑
j=1

N∑
k=1

up
kjDiss(patternj , iemk)

2 +

∑C
j=1

∑N
k=1

∑N
l=1 u

p
kju

p
ljDiss(iemk, ieml)

2∑N
k=1 u

p
kj

−
N∑

k=1

λk(

C∑
j=1

ukj − 1)

(4.21)

The necessary condition for a minimum is that the partial derivatives of the Lagrangian function
with regard to U vanish. Therefore ∂L(u)

∂uab
= 0, we have:

∂L(u)

∂uab
=

∂

∂uab
f1 +

∂

∂uab
f2 −

∂

∂uab
f3 = 0, where (4.22)

f1 =

C∑
j=1

N∑
k=1

up
kjDiss(patternj , iemk)

2 (4.23)

f2 =

∑C
j=1

∑N
k=1

∑N
l=1 u

p
kju

p
ljDiss(iemk, ieml)

2∑N
k=1 u

p
kj

(4.24)

f3 =

N∑
k=1

λk(

C∑
j=1

ukj − 1) (4.25)

∂

∂uab
f1 =

∂

∂uab

C∑
j=1

N∑
k=1

up
kjDiss(patternj , iemk)

2 = p up−1
ab Diss(patternb, iema)

2 (4.26)

∂

∂uab
f2 =

∂

∂uab

∑C
j=1

∑N
k=1

∑N
l=1 u

p
kju

p
ljDiss(iemk, ieml)

2∑N
k=1 u

p
kj

(4.27)

= 0 if j ̸= b

+ ∂
∂uab

up
abu

p
abDiss(iema,iema)

2

up
ab

= 0 (∵ Diss(iema, iema) = 0) if k = a, l = a, j = b

+ ∂
∂uab

up
ab

∑N
l=1,l ̸=a up

lbDiss(iema,ieml)
2

up
ab

= 0 if k = a, l ̸= a, j = b

+ ∂
∂uab

up
ab

∑N
k=1,k ̸=a up

kbDiss(iemk,iema)
2∑N

k=1,k ̸=a up
kb

= p up−1
ab

∑N
k=1,k ̸=a up

kbDiss(iemk,iema)
2∑N

k=1,k ̸=a up
kb

if k ̸= a, l = a, j = b

+0 if k ̸= a, l = a, j = b

= p up−1
ab

∑N
k=1,k ̸=a up

kbDiss(iemk,iema)
2∑N

k=1,k ̸=a up
kb

32

∂

∂uab
f3 =

∂

∂uab

N∑
k=1

λk(

C∑
j=1

ukj − 1) = λa (4.28)

From Equations (4.26) to (4.28),

∂L(u)

∂uab
= p up−1

ab

(
Diss(patternb, iema)

2 +

∑N
k=1,k ̸=a u

p
kbDiss(iemk, iema)

2∑N
k=1,k ̸=a u

p
kb

)
− λa = 0 (4.29)

uab =

(
λa

p

(
Diss(patternb, iema)

2 +

∑N
k=1,k ̸=a u

p
kbDiss(iemk, iema)

2∑N
k=1,k ̸=a u

p
kb

)−1
) 1

p−1

(4.30)

From Equations (4.18) and (4.30),

C∑
j=1

ukj =

C∑
j=1

(
λk

p

(
Diss(patternj , iemk)

2 +

∑N
h=1,h ̸=k u

p
hjDiss(iemh, iemk)

2∑N
h=1,h ̸=a u

p
hj

)−1
) 1

p−1

= 1 (4.31)

Let. D(k, j) = Diss(patternj , iemk)
2 +

∑N
h=1,h ̸=k u

p
hjDiss(iemh, iemk)

2∑N
h=1,h̸=k u

p
hj

(4.32)

From Equations (4.31) and (4.32),
C∑

j=1

(λk

p

1

D(k, j)

) 1
p−1

= 1 (4.33)

λ
1

p−1

k

C∑
j=1

(1

p ·D(k, j)

) 1
p−1

= 1 (4.34)

λ
−1
p−1

k =

C∑
j=1

(1

p ·D(k, j)

) 1
p−1

(4.35)

λk =

(
C∑

j=1

(
p ·D(k, j)

)− 1
p−1

)1−p

=

(
C∑

j=1

(
p ·D(k, j)

) 1
1−p

)1−p

(4.36)

From Equations (4.30), (4.32), and (4.36),

ukj =

(
1

p
·
(C∑

i=1

(
p ·D(k, i)

) 1
1−p

)1−p

·D(k, j)−1

) 1
p−1

(4.37)

=

(
1

p
· (p

1
1−p)1−p ·

(C∑
i=1

D(k, i)
1

1−p

)1−p

·D(k, j)−1

) 1
p−1

(4.38)

=
D(k, j)

1
1−p∑C

i=1 D(k, i)
1

1−p

(4.39)

4.4 Pattern-based Suspiciousness Calculation

Based on the generated patterns, we propose a suspicious code localization technique that can
reduce the significant cost needed to localize the root causes of failures. A pattern contains a sequence
of communication messages involving CS-level operations as their contents. The localization technique
infers suspicious codes by using the code coverage calculation method for CS-level operations, such
as SPLIT_REQ and MERGE_REQ. By executing every single CS-level operation and measuring the code
coverage, we built a code coverage set that records the actually executed code lines for each operation.

33

For example, lines 1381-1431 are executed in the single execution of SPLIT_REQ. Based on the code
coverage set, we localize codes that are suspicious to cause SoS failures.

Figure 4.6: Example of pattern-based fault localization

By using the code coverage set of each CS-level operation, our approach ranks the codes by the
suspiciousness of causing the failures. There are numerous studies of spectrum-based fault localization
(SBFL) for calculating the suspiciousness of code lines from the code execution coverage [158, 159, 160,
161, 148]. However, SBFL techniques only consider the coverage of operations without considering the
sequential orders of the execution. Thus, we propose a suspiciousness ranking method, SeqOverlap, based
on the number of sequential overlaps of the codes. SeqOverlap method is aimed to prioritize the most
repeatedly executed code statements in the sequence of CS-level operations in FII patterns. For example,
the codes related to the execution of SPLIT_REQ, the first message at the top of Figure 4.6, contain lines
1381-1393. The next message is SPLIT_ACCEPT, and the related codes contain lines 1381-1393. Hence,
lines 1381-1393 have two sequential overlaps. In this manner, we calculate the number of sequential

34

overlaps and order the code snippets depicted as the bottom part in Figure 4.6. In the example, lines
853-859 are ranked first, because the code snippet is frequently executed by MERGE_REQ and ACK in the
platooning simulations.

The proposed approach finally returns two outputs: identified interaction failure patterns and ranked
suspicious code blocks for the patterns. From the outputs, SoS managers can obtain two benefits in
fault identification. First, the managers can establish the basic understanding of the failures from the
patterns. For example, from pattern 4 in Fig. 4.6, we can infer that the failure is related to the concurrent
execution of Split and Merge. Second, SoS managers can focus on the ranked suspicious lines of codes
corresponding to the faulty interaction patterns, thus effectively reducing the cost required to identify
the root causes of interaction failures in SoS. Besides, we implemented and opened the automated phases
of our approach in our Github repository1.

We expect that by using the manual fault identification process based on the fault patterns and
suspicious code blocks, detailed fault knowledge can be established. The fault knowledge may contain
the root causes, failure occurrence contexts with preconditions, frequencies, and severities of the corre-
sponding interaction failures [162]. The fault knowledge can be utilized in various ways, such as run-time
monitoring/detection, or prediction of the analyzed failures, and oracle for fault injection. We expect
that the analyzed fault knowledge of the CPSoS can be utilized as general failure scenarios or patterns
for platooning protocol testing. Further, it can support run-time monitoring or detection for CPSoS.

1Unable to describe due to the double blind policy

35

Chapter 5. Experimental Dataset

5.1 Verification Framework for Platooning SoS

5.1.1 Statistical Verification Framework of Platooning SoS: StarPlateS

In this section, we explain the main features of this framework. Fig. 5.1 shows the architecture of
the framework which is composed of the scenario generation module, simulation module, and verification
module. The proposed framework, StarPlateS operates as follows. First, the scenario module generates
random configurations and scenarios of the platooning SoS using condition-based approach. Then, the
simulation module executes the system on the generated scenarios with stochastic environment. Finally,
the verification module applies a statistical model checking technique, especially the SPRT, and returns
the verification results for each configuration and scenario. The following parts detail each component
of the framework in sequence.

Figure 5.1: Overall architecture of the verification framework.

Simulation settings

There are several options for executing a simulation: simulation time, repetition numbers, verifica-
tion options, duration between events, and GUI. We define these options as simulation settings. There
are two modes of simulation settings according to the use of the StarPlateS framework. First, users can
use our framework in ‘verification mode’. In this mode, users set high repetition numbers, such as 1,000,
and the verification option that is true for statistical verification. Another way of finding configurations
and scenarios with specific purpose is called the ‘single simulation mode’. In this mode, users assign
the repetition number as 1 and set the verification option at false; thus, the framework generates as
many scenarios as possible in the given amount of time. For example, we use the single simulation mode
to compare two scenario generation approaches and the verification mode to conduct statistical model
checking. The simulation settings are utilized in the scenario generation module and simulation module.

36

Scenario generation module

In the scenario generation module, the main goal is to generate diverse scenarios and configurations
to address the internal uncertainty of the platooning system. Prior to explaining the module, we define
a configuration as a set of platoon generation features and a scenario as a sequence of operations on
the created vehicles. This module first generates random platoon configurations, and then generates
scenarios based on each configuration.

When generating configurations of the platoons, We assign random values to every parameter of the
platooning configuration. For example, in the configuration part of Fig. 5.2, the first generated platoon
consists of “6" homogeneous cars with id “veh1" created in the “0" lane of “route1" at position “100". Its
optimal size is “4" and its maximum size is “10". The second configuration shows the “4" sizes of the
platoon with id “veh2" created in the “1" lane of “route1". Its optimal size is “4", and its maximum size is
“8". The pltMgnProt option is used to check whether the vehicles use platooning management protocols
or not. In this work, we assume that the platoons always use management protocols; thus, the value of
pltMgnProt is always “true". We also add heterogeneous types of vehicles to generate configurations. For
example, Fig. 5.3 shows a heterogeneous platoon that consists of a truck leader (V5) and three following
passenger vehicles (V6, V7, and V8).

Figure 5.2: An example of platoon configuration and scenario.
Next, to generate various scenarios, this module uses a condition-based approach to generate the

scenarios for each configuration. A key point of the proposed approach is the pre-simulation of the
scenarios to prevent the generation of meaningless and invalid scenarios by using the conditions and
actions of each event. For example, if the module selects events in a purely random way, there could be
meaningless scenarios, such as executing a Split operation on a platoon with size 1, and invalid scenarios,
such as executing a Leave operation to a vehicle which has already left the platoon.

Figure 5.3: Generated platoons and Humman-Driven Vehicles (HDVs) in StarPlateS.

37

To alleviate this problem, we first define the available events and their conditions and actions
in the platooning system. In the framework, vehicle management, platoon management, and policy
management events as well as their conditions and actions are utilized. The Speedchange operation
changes the speed of the leader of the platoon, and the Optimalsizechange operation changes the optimal
sizes of all platoons. This operation causes Split events in the platoons that are larger than the assigned
optimal size.

Considering the condition and action of each event, this algorithm generates a status set in each
step of the scenario generation. For example, according to the configuration of the two platoons shown in
Fig. 5.2, the initial status set is as follows: {“veh1:6", “veh2:4"}, which describes the platoon ids and their
sizes in the initial state. Next, the proposed approach randomly selects an available event by comparing
the current status set with the condition of each event. In the example, all but Merge operations are
available, because two platoons in the same lane don’t exist. Then, the algorithm randomly selects
the Split event among the available events as shown in the Fig. 5.21. Then the attributes of the Split
operation are randomly assigned. In the example, the Split operation is executed in the platoon “veh1"
with an index of “3" at “25 seconds". Using these attributes and actions, the algorithm updates the
status set. Because the Split operation divides “veh1" into two platoons from the “veh1.3" vehicle, the
example status is changed to {“veh1:3", “veh1.3:3", “veh2:4"}. In this way, we can select an available
event after specific sequences of events to successfully generate valid scenarios. Fig. 5.2 shows a scenario
that consists of Split, and Optsize, Leave, Merge with the duration of 20 seconds.

Simulation module

After the scenario generation module returns the sets of configurations and scenarios, the simulation
module executes the platooning management system on the configurations and scenarios using the VEN-
TOS. This module performs two main functionalities to generate execution traces for each configuration
and scenario, and to address the environmental uncertainty of the platooning SoS. In addition, as men-
tioned in subsection A, there are two types of simulation modes: “verification" and “single simulation".
These modes repeat the same configurations and scenarios many times with verification and only one
time without verification, respectively. To address the external environmental uncertainty problems in
the platooning system, this module adds stochastic environmental objects, such as HDVs, which are not
communicatable with C-ACC vehicles; thus, they cannot anticipate the movement of the HDVs in the
simulation, which randomly change lanes and speeds, and even stop randomly. These features of HDVs
could make collision of vehicles in the simulation. Fig. 5.3 shows generated HDVs with ids of “EV1" and
“EV2". “EV1" is a truck vehicle and “EV2" is a passenger vehicle. In addition, in this module, users
can change the generation period of the HDVs. Therefore, users can execute the simulation with various
environments, such as rush hour or an empty road by changing the vehicle generation period. With
stochastic environmental objects, this module finally returns the executions traces of each configuration
and scenario to the verification module.

Verification module and results

Lastly, the verification module applies the statistical model checking algorithm to check the achieve-
ment rates of specific goals. The verification module needs verification properties of the platooning SoS

1In the VENTOS, there is an implementation issue that it returns an error when platoons move at 0 second in a
simulation. Thus, in the VENTOS manual, they suggest to assign the platoon with speed 0 at first and change its speed
at specific times. Therefore, the first two Speedchange events are automatically generated in Fig. 5.2

38

which are related to the goals of the system. Previous research [140] provided the formal definition of
the verification properties in a platooning management system. However, in this definition, the proper-
ties are focused on verifying the performance of basic operations of the system without considering the
macro-level goals, and assume that there is only one platoon in the simulation. Because our framework
assumes that there are more than two platoons in the simulation, and it attempts to verify systems
with high-level goals, the existing properties do not match our verification goals. Therefore, we defined
new verification properties that are appropriate for verifying the high-level goals in a multi-platoon sit-
uation. The verification properties of the platooning system can be written in property specification
languages, such as Linear Time Logic (LTL), and Computational Tree Logic (CTL), Probabilistic CTL
(PCTL) [163]. We chose the PCTL verification property specification language. The defined properties
are as follows:

1. P =? [F <= t num_passed_veh_P > n]

2. P =? [(op_reject_rate > x) U sim_Terminate]

We defined these two properties to check the CS-level goal, which checks arrival of participant
vehicles, and SoS-level goal, which checks the success rate of the operation in the platoon. The meaning
of the first verification property is “the probability that more than n cars passed through the specific
point P within the first t seconds". This verification property checks whether the average speed of the
platoon is maintained by the end of the simulation. For example, in the experiment, we set the average
velocity of all generated platoons at 20 m/s and assigned the P value to 1,800m point to check the average
speed maintenance. The second property checks “the probability that the rate of operation_reject is
over x before the simulation terminates". In the experiments, we assigned the value x to 0 for checking
the existence of reject signal of the operations. Thus, by using this property, we can see how smoothly
the platoon operations were done at the occurrence rate of the reject signal.

With the two verification properties, we applied a statistical verification technique, the SPRT [164]
algorithm which gradually checks the achievement rate of a specific property. Most of the existing
research tried to verify the platooning system with simulating a single platoon because of the state-
explosion problem. In contrast, we overcome this limitation by applying the statistical approach. Thus,
we used 2 to 4 platoons which consist of 3 to 6 vehicles respectively with more than 20 HDVs to verify
the platooning system in the VENTOS.

5.2 PLTBench Dataset

In this section, we explain the detailed procedure for generating a benchmark dataset based on the
StarPlateS framework, and elucidate the components of the PLTBench2 in several aspects.

5.2.1 Benchmark Generation Procedure

Fig. 5.4 depicts the overall procedure for generating the benchmark dataset. We performed two
full examinations of all failed logs. The goal of the first examination is to establish the fault knowledge
base for the failures that occurred in platooning SoS. In the first examination, we specified the failure
scenarios in the form of the context, triggering events, and symptoms. We further analyzed the root

2https://sites.google.com/se.kaist.ac.kr/pltbench/

39

causes and failure patterns of each failure class. By generating the fault knowledge base including the
aforementioned information, the basis for generating a benchmark dataset was completed.

Figure 5.4: Overall process of generating the benchmark dataset for platooning SoS
Using the fault knowledge base, we performed a labeling procedure for all failed logs in the second

examination phase. First, we labeled the failed logs by checking whether the occurrence patterns for each
failure class are detected. Then, we executed the failed scenarios again and confirmed that the labels
were correctly assigned to the failure executions in the GUI simulation. We performed the classification
based on the analysis results for OSR and COLL, respectively.

Subsequently, we analyzed and improved the quality of the generated dataset. We analyzed the data
set on three aspects: Correctness, Availability, and Balance. To check the correctness of the data set, we

40

assigned the failed logs to the project members and cross-checked the labeling result so that every failed
log could be checked by at least two people. To increase the availability of the dataset, we implemented
a web page for the accessible utilization of the benchmark dataset. Finally, we investigated the balance
of the dataset, which checks whether the distribution of data was not too skewed. The details of the
composition of the benchmark dataset are described in the next section.

5.2.2 PLTBench Composition

The benchmark dataset is mainly composed of raw logs with scenarios, analysis results, and clas-
sification results with statistics. The whole benchmark dataset including the analysis and classification
results can be found on our web page. As it is described, the raw logs are approximately 42 GB of
simulation execution traces, and consist of vehicle location data, emission data, platooning configuration
data, and platooning communication data. Each datapoint was stored in units of 0.5 milliseconds. Ad-
ditionally, we gathered console messages from VENTOS simulator for each simulation and saved them.
The console logs contain information on the state changes of platooning vehicles and collision messages.
To provide the reproducibility of the generated logs, we also added the scenarios and configurations
of the logs in the dataset. The initial vehicle configurations and scenarios with platooning operation
execution at specific times were included. Therefore, users can reproduce the execution traces or check
the simulation in GUI by using the scenarios and configurations.

5.2.3 Empirical Analysis of Platooning SoS

In this section, we describe the empirical analysis of the platooning SoS protocol. After introducing
the settings for the empirical analysis, we present the analysis results in detail.

Empirical Study Design

The target software of this analysis is the platooning management protocol provided by VENTOS.
We utilized the StarPlateS framework to efficiently generate random scenarios for VENTOS execution
and check whether the verification property was achieved on the execution logs. The detailed setup for
the empirical study is presented in Table 5.1. We generated a total of 6,525 scenarios and execution traces
for the scenarios (42 GB). In each scenario, events representing the execution of the platooning operation,
such as Merge or Leave were inserted at 20-second intervals. Thus, in 100 seconds simulation, at least
five platooning operations should be executed. For reliability evaluation factors, operation_success_rate
(OSR) and collision_existence (COLL) were used. The OSR property is provided by the StarPlateS
framework, and this property is one of the conventional verification properties for cloud systems [17].
The COLL property is newly added to verify the existence of collisions in the simulation. Originally, the
VENTOS simulator had a collision-free option in the simulation; thus, no collision occurred. We turned
off the collision-free setting by following the VENTOS manual and added the collision detection module
in StarPlateS. We set the threshold values of 0.8 and 1 to distinguish success from failure for the OSR
and COLL properties, respectively.

A single simulation time was 100 logic seconds of the simulator. It actually takes approximately
10 to 15 seconds to execute in VENTOS. In each simulation, the number of platoons was randomly
selected, from 2 to 4, with a randomly assigned size of 2 to 6. The simulation map is assigned by an
infinite length of road with three lanes. The starting lanes of the platoons were randomly selected. In
addition, to cover environmental uncertainties in the reliability analysis, we added human-driven vehicles

41

Table 5.1: Overall setups of the empirical study

Parameter Setting

Scenario setting

Number of generated scenarios 6,525 scenarios

Duration between events 20 logic seconds

Verification property

OSR threshold 0.8

COLL threshold 1

Simulation setting

Duration of a single simulation 100 logic seconds

Number of generated platoons 2−4 platoons

Size of each platoon 2−6 vehicles

Map An infinite length road with 3 lanes

Environmental objects
Human-Driven Vehicle (HDV) generated every 5 sec-
onds

Vehicle setting

Types of vehicles Passenger, Truck

Autonomous driving policy Krauss, ACC, CACC models

Hardware specification

CPU Intel i7-9700K CPU @3.60GHz

Memory 32GB

SSD Samsung SSD 860 Pro 500GB

Software specification

OS Ubuntu 16.04 64-bit

OMNET++ 5.4.1

JAVA version java 1.8.0

(HDVs) that cannot communicate with platoon vehicles and randomly change the speed and lanes in the
simulation. The HDVs are generated every 5 seconds; thus, approximately 20 HDVs are generated in a
single simulation.

To cover the diversity and heterogeneity of platooning SoS, we added two types of vehicles, passenger
and trucks, as platooning vehicles and HDVs. Every vehicle had an autonomous driving model out of
the Krauss, adaptive cruise control (ACC), and cooperative ACC (CACC) models provided by SUMO3.
In the simulation, platooning vehicles use the CACC model as the default option. However, in specific
cases, such as persistent communication failures or a sudden loss of leaders by collision, the driving policy
of the platooning vehicles is changed to the ACC or the Krauss model.

The hardware and software specifications for the empirical study are also described in Table 5.1. We
followed the default settings of the VENTOS installation: Ubuntu 16.04, OMNET++ 5.4.1, and Java
1.8.0. In the next section, we elucidate the empirical analysis results based on these settings.

3https://sumo.dlr.de/docs/

42

Figure 5.5: Illustrative example of executions of failure class 2 in OSR analysis

Operational Success Rate Analysis

Based on the settings described in the previous section, we investigated the failed execution logs
using the OSR property. We found ten failure situations that always violate the OSR property. Ta-
ble 5.2 elucidates the detailed fault analysis results for each situation, which are organized as failure
classes. The failure scenarios for each class are described by the context, triggering event of errors,
and symptoms. Furthermore, the failures are categorized into four types: Incorrect logic; Missing logic;
Non-occurrence of expected events on expected time; and Communication concurrency error by their
root causes and execution context. Based on the existing categorization taxonomy of interaction failures
among humans and robots [79], we added new classifications, like Communication concurrency errors or

43

Table 5.2: Empirical analysis results on OSR verification property

Class ID
Failure scenario

Faults in code
Lines in code
05_PlatoonMg.ccName Context Triggering event Symptoms Categorization

Class 1
Simultaneous

Merge & Merge
During the Merge operation

The rear platoon leader requests
Merge by OptSize policy to the
same leader who simultaneously
requests Merge operation.

Constantly requests Merge
to the original leader

Communication concurrency error
- BusyReplying bug OR
- MERGE_REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 2
Simultaneous
Split & Merge

During the Split operation

The rear platoon leader requests
Merge by OptSize policy to the
same leader who simultaneously
requests Split operation.

Constantly requests Merge
to the original leader

Communication concurrency error
- BusyReplying bug OR
- MERGE_REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 3
Simultaneous

LeaderLeave & Merge
During the Leader
Leave operation

The rear platoon leader requests
Merge by OptSize policy to the
same leader who simultaneously
requests LeaderLeave operation.

Constantly requests Merge
to the original leader

Communication concurrency error
- BusyReplying bug OR
- MERGE_REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 4
Simultaneous

FollowerLeave & Merge
During the Follower

Leave operation

The rear platoon leader requests
Merge by OptSize policy to the
same leader who simultaneously
requests FollowerLeave operation.

Constantly requests Merge
to the original leader

Communication concurrency error
- BusyReplying bug OR
- MERGE_REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 5 Split Optsize During the Split operation
The rear platoon leader requests
Merge to the newly split platoon
by OptSize policy

Constantly requests Merge
to the newly split platoon leader

Incorrect logic
- BusyReplying bug OR
- MERGE_REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 6
LeaderLeave
Optsize 1

During the Leader
Leave operation

The rear platoon leader requests
Merge to the new platoon leader
by OptSize policy

Constantly requests Merge
to the new leader

Incorrect logic
- BusyReplying bug OR
- MERGE_REQUEST attempt bug

- 609∼636
- 729 ∼744

Class 7
LeaderLeave
Optsize 2

During the Leader
Leave operation

The new platoon leader requests
Merge to the left leader by
OptSize policy

Constantly requests Merge
to the left leader

Missing logic
- ChangeVehStateLastly bug OR
- LeavedVehList bug

- 1397∼1424
- 726∼745

Class 8
MiddleFollower
Leave Optsize 1

During the Middle Follower
Leave operation

The intermediate platoon leader
requests Merge to the left vehicle
by OptSize policy

Constantly requests Merge
to the left leader

Missing logic
- FollowerLeaveProtocol bug OR
- LeavedVehList bug

- 1764∼1798
- 726∼745

Class 9
MiddleFollower
Leave Optsize 2

During the Middle Follower
Leave operation

The rear platoon leader requests
Merge to the intermediate leader
by OptSize policy

Constantly requests Merge
to the intermediate leader

Non-occurrence of expected events
on expected time

- FollowerLeaveProtocol bug AND
- LeaveSplitCaller bug

- 1780∼1796

Class 10
EndFollower
Leave Optsize

During the Split operation in the
End Follower Leave operation

The rear platoon leader requests
Merge to the left vehicle
by OptSize policy

Constantly requests Merge
to the left leader

Incorrect logic
- BusyReplying bug OR
- MERGE_REQUEST attempt bug

- 609∼636
- 729 ∼744

Cascading failure, and applied them in the analysis. For example, the failure classes 5, 6, and 10 are
caused by the “MergeRequestAttempt bug", which is an incorrect logic applied during the MERGE_REQ

process. Similarly, failure classes 7 and 8 were caused by the missing logic of specific protocol exe-
cution, such as LeaderLeave and MiddleFollowerLeave operations. Class 9 denotes that during the
MiddleFollowerLeave operation, certain events were not correctly executed in a specific condition. Fi-
nally, classes 1 to 4 explains the concurrency failure cases, where a platoon leader requests operations,
such as LeaderLeave or Merge, and is also requested to Merge by the other platoon leader simultaneously.

Fig. 5.5 illustrates the execution of failure class 2, which is a simultaneous Split and Merge. When
a platoon follower, V2, requests Split to V1, the other platoon leader behind the platoon, V5, could
simultaneously request Merge operation to V1. In the VENTOS protocol, the Merge request delivered
during the Split execution, is ignored or rejected. However, even after the Split operation is completed,
we observed that the rear platoon leader, V5, continuously requests Merge to the same vehicle, V1. This
failure situation adversely affects the operation of the related platoon vehicles, V1 and V5, and may
cause overall operation delays or execution failures.

The seventh and eighth columns of Table 5.2 describe the corresponding faults and their locations.
For example, “MERGE_REQUEST attempt bug" is one where the “MergeRequestAttempts" value is changed
to the initial value after the three times requests, but the sender vehicle continuously requests Merge.
To resolve the bug, the additional data variable is necessary to check the busy vehicles. The bug is
located in the code blocks of 05_platoonMg.cc file in lines 729-744. The OR symbol in the seventh
column denotes that, if one of the faults is fixed, the failure is resolved. The AND symbol indicates
that both of the faults must be fixed to resolve the failure. The faults identified in this study are mostly
due to the absence of several statements, which are missing logic or incorrect logic flows for unexpected
situations and interactions in the protocol. This implies that most solutions for the bugs include adding
new conditional code blocks followed by the improvement of the protocol model design. On the web
page of the PLTBench, we provided detailed information for all code-level faults and their occurrence
patterns with more various illustrative examples.

44

a An example of MergeRequestAttempts bug b An example solution of MergeRequestAttempts bug

c Examples of bugs related to pattern 3 d An example solution of bugs related to pattern3

Figure 5.6: Example code-level bugs and solutions identified in this study

The Merge requests by the rear platoon were caused by the optimal-size maintenance policy in
the protocol. However, we focused on the continuous requests of Merge, because it badly affected the
execution of other operations by continuing to deliver redundant messages. We found the root cause
of the continuous MERGE_REQUEST in the isolated code blocks depicted in Fig. 5.6a. In the code, if a
vehicle requests a Merge operation with the same vehicle more than three times, the sender vehicle stops
requesting more. However, after the initialization of the mergeReqAttempts variable returns to 0, the
sender vehicle again requests Merge to the same vehicle. In other words, once a vehicle starts sending
a MERGE_REQUEST, it constantly sends the request to the vehicles until the end of the simulation. One
solution for the “MergeRequestAttempt bug" suggested addressing this is by saving and checking vehicle
ids that have already been rejected more than three times, as in Fig. 5.6b.

Fig. 5.6c describes example faults related to the cluster3 pattern; “FollowerLeaveProtocol bug"
and “SplitCaller bug". Firstly, we found that the execution of the MiddleFollowerLeave differed from
the platooning protocol logic [5]. In the logic, the MiddleFollowerLeave consists of two Splits of
the following and left vehicles, and one Merge of the intermediately split vehicles. However, in the
VENTOS code depicted at the top of Fig. 5.6c, MiddleFollowerLeave only consists of two Splits, and
the Merge process is not properly called when there is no remaining Split operation. The second bug,
described at the bottom of Fig. 5.6c, is related to the execution of the two Split operations. During
the MiddleFollowerLeave operation, the two Split operations must be executed with different internal
settings, but the splitCaller variable has the same value in each Split call. We explain the example
solutions for the described bugs in Fig. 5.6d. Firstly, for solving the “FollowerLeaveProtocol bug", the
conditional statement to check whether the case is MiddleFollowerLeave or EndFollowerLeave in the
first “if" statement is added. Then, one more “else if" block must be appended to call the Merge operation
when it is MiddleFollowerLeave. Next, to resolve the “LeaveSplitCaller" bug, -1 must be assigned to
the splitCaller variable rather than 1.

45

Table 5.3: Empirical analysis results on COLL verification property

Class ID
Failure scenario

Faults in code
Lines in code
05_PlatoonMg.ccName Context Triggering event Symptoms Categorization

Class 1 Split During the Split operation
The split operation from the platoon
results the platoon vehicles to
increase the front distance.

Collision occurred Missing logic
- Missing distance checking
during Split

- 1381 ∼ 1393

Class 2 LeaderLeave
During the Leader
Leave operation

The leave operation from the platoon
results the platoon vehicles to
increase the front distance.

Collision occurred Missing logic
- Missing distance checking
during LeaderLeave

- 1581 ∼ 1596

Class 3 MiddleFollowerLeave
During the Middle Follower

Leave operation

The leave operation from the middle
of the platoon results in a split
operation.

Collision occurred Missing logic
- Missing distance checking
during MiddleFollowerLeave

- 1738 ∼ 1749
- 1764 ∼ 1777

Class 4 EndFollowerLeave
During the End Follower

Leave operation

The end vehicle prepares to leave
the platoon by increasing the
front distance.

Collision occurred Missing logic
- Missing distance checking
during EndFollowerLeave

- 1738 ∼ 1749
- 1751 ∼ 1763

Class 5 SpeedChange
During the Speed
Change operation

The vehicle changes its speed Collision occurred Missing logic
- Missing distance checking
during SpeedChange

in vehicle driving setting code

Class 6 Merge During the Merge operation
The merge operation is unsuccessful
resulting in increasing the
front distance.

Collision occurred
Missing logic

Cascading failure

- Missing distance checking
during Merge
- BusyReplying bug OR
- MERGE_REQUEST attempt bug

- 727 ∼745

Through the analysis on interaction patterns and isolated codes, we showed that most of the solutions
included adding new codes, such as modifying specific logic or adding a new logic. This is a characteristic
of omission bugs, and it can be shown that with the proposed fault analysis process, isolation and
identification of omission bugs in platooning SoS protocol are possible. Besides, We have issued the
identified bugs in the VENTOS platooning protocol to VENTOS developers, and we are waiting for
their answers. Detailed descriptions of the “MergeRequesetAttempt bug", “FollowerLeaveProtocol bug",
and “LeaveSplitCall bug" are elucidated above, but the detailed explanations for all bugs can be found
in the PLTBench website. We expect that the fault identification results could be used as an example
fault knowledge base for future studies focusing on testing and analyzing failures in large and complex
systems.

Collision Analysis

Similar to the OSR property-based analysis, we conducted a detailed analysis on failure cases that
violated the COLL property. Table 5.3 describes the failure scenarios, code-level faults, and categoriza-
tion of the root causes. We focused on the six types of failure classes that were caused by platooning
operations. There are more types of failure scenarios that cause collisions in Table 5.5. However, we
conducted the analysis focusing on failure scenarios that have the root causes inside the platooning sys-
tem. First, we confirmed that collisions could be caused by all platooning operations that are executable
in the VENTOS simulator. The root cause of collisions in the majority of detected failure classes was
that the platooning operation logic did not consider the presence of environmental vehicles (i.e., HDVs)
or other platoon vehicles in the rear. Therefore, most of the root causes of detected collisions are the
omission of the logic that considers the distance from the rear vehicle in each operation. In the case of
SpeedChange operation, there is no code of function call in the 05_platoonMg.cc file, but in the other
code section. Similarly, in order to solve the majority of the root causes found above, specific codes must
be newly added.

Fig. 5.7 depicts one of the interesting failure scenarios detected in the collision analysis. The illus-
trated failure case belongs to failure class six in Table 5.3 and is a type of comprehensive and cascading
failure scenario. First, in a situation where three platoons, V1, V2, and V5, request simultaneous Merge
to the front leader, illustrated in 1) in Fig. 5.7, the inter-platoon distance between V1 and V2 is reduced
to perform the Merge operations, as illustrated in 2). However, owing to the simultaneous requests of the
Merge operations, V2 is overloaded and the Merge with V1, which is already in progress, eventually fails.

46

Figure 5.7: Illustrative example of executions of failure class 6 in COLL
Due to the failure of the progressing Merge operation, V2 needs to increase the inter-platoon distance to
the original distance. Inevitably, in this process, the V5 also slows down to maintain the inter-platoon
distance with V2, and V5 collides with the rear environmental vehicle in the end. In this manner, fail-
ure situations in platooning SoS occur during concurrent and intricate interactions; thus analyzing the
failures is a highly time-consuming task. We generated the benchmark dataset based on the detailed
analysis results.

5.2.4 Statistics of the Dataset

In addition to the detailed empirical analysis results for the reliability properties, we provide failure
scenario classification results and statistics for all failed logs. The classification results for failure scenarios
that violate the OSR property are listed in Table 5.4. We found 3,256 numbers of failed logs and 3,830
cases of failure executions. The difference between the total number of failed logs and the number of
actual detected failure classes appears because multiple failure scenarios occur simultaneously in a single
log. On average, it was confirmed that 1.17 failure classes were found in one log.

It is also observed that the data distribution is affected according to the failure classes. Generally, the
simultaneous failure classes were smaller than the other classes. This trend is caused by the generation
of random scenarios. Scenarios in which specific operations are executed simultaneously are less likely to
be randomly generated than scenarios that do not involve simultaneous operation executions. Therefore,
differences in distribution are inevitable because of the difficulties in generating edge cases in the process
of generating random scenarios. From the viewpoint of data balancing, uniformly distributed data is not
always the best option for a dataset [165]. In the credit card defrauded dataset, only 3.9% of the data are
related to the fraud [166], and only 0.4% is positive in the HIV prevalence data set [165]. Nevertheless,
we plan to generate more scenarios involving simultaneous operation execution. We will use a guided
method by modifying the random scenario generation module in StarPlateS and provide more numbers

47

Table 5.4: OSR analysis statistics

Class ID Counts

Class 1 (Simultaneous Merge & Merge) 213

Class 2 (Simultaneous Split & Merge) 62

Class 3 (Simultaneous LeaderLeave &
Merge)

133

Class 4 (Simultaneous FollowerLeave &
Merge)

138

Class 5 (Split optsize) 794

Class 6 (LeaderLeave optsize 1) 159

Class 7 (LeaderLeave optsize 2) 579

Class 8 (MiddleFollowerLeave optsize 1) 389

Class 9 (MiddleFollowerLeave optsize 2) 1104

Class 10 (EndFollowerLeave optsize) 259

Total 3830

of the failure executions corresponding to the simultaneous operation executions.
Table 5.5 describes the statistics of the classification results by the failure classes that violate the

COLL property. We conducted the classification process according to the collision subjects: “Env vehicle
(i.e., HDV) with Plt vehicle", “Env vehicle with Env vehicle", and “Plt vehicle with Plt vehicle" and
to the cause of collisions: “by Env vehicle", “By Plt Operations(e.g., Merge, MiddleFollowerLeave),
and “by unknown". The simultaneous occurrence of multiple failure classes showed a similar trend in
collision failures. We identified 965 failure cases among the 900 failed logs. However, we found that
the logs having multiple failure cases contain more numbers of failure cases at once. For instance, the
maximum number of multiple failure cases in a single failed log is six in the COLL analysis result.

The failure cases we mainly focus on are collisions caused by platooning operations (By Plt Op) or
collisions involving platoon vehicles (Plt_Plt and Plt_Env). All collision cases among platoon vehicles
(Plt_Plt) are caused by HDVs, which suddenly change their speed or driving lanes just in front of truck
platoon vehicles. Most crashes caused by environmental HDVs (By Env) have similar failure scenarios
to sudden lane change and speed change. In the collision cases caused by the platooning operations (By
Plt Op), we found 172 cases in total. The most common case is by Split operation. This is because the
Split operation is called during the execution of all Leave operations.

The Unknown cases are the scenarios that are difficult to reproduce or the cases in which the causes
of the collisions are unclear by checking the simulation. For instance, one example of an Unknown case is
a situation in which an HDV increases the distance to its rear vehicle corresponding to a platoon vehicle
in the process of Split in the other lane. To analyze the unknown cases, we plan to perform the deep
code-level analysis for all simulator codes, as well as the platooning protocol codes in VENTOS.

We utilized the empirical analysis results of the platooning SoS in the evaluation of the proposed
approaches with existing techniques. The details are elucidated in Section 6.

48

Table 5.5: COLL analysis statistics

Class ID Env_Env Plt_Plt Plt_Env Sum

By Env 521 9 218 748

By Plt Op 29 – 172 201

- Class 1 (Split) 11 – 78 89

- Class 2
(LeaderLeave)

6 – 18 24

-
Class 3
(MiddleFollowerLeave)

3 – 26 29

-
Class 4
(EndFollowerLeave)

1 – 25 26

- Class 5
(SpeedChange)

8 – 23 31

- Class 6 (Merge) 0 – 2 2

Unknown 4 – 12 16

Total 554 9 402 965

5.3 Mass Casualty Incident-Response (MCI-R) SoS Dataset by

SIMVA-SoS

The goal of MCI-R SoS is to rescue and treat as many patients in MCI situations as possible through
the collaboration of firefighters, ambulances, SoS managers, bridgeheads, and hospitals. SIMVA-SoS [10]
provides simulation and verification modules for MCI-R SoS, defining various types of failure-inducing
stimuli, such as communication loss, delay, and specific bugs in code. Figure 5.8 describes the structure
of the MCI-R collaboration protocol logic. Centering on the SoS manager, CSs cooperate with each other
to perform patient searching, rescue, transportation, and treatment. We found five types of bugs among
the defined stimuli, which are specifically located in the collaboration protocol code, in SIMVA-SoS as
depicted in Figure 5.8.

The first bug causes a failure scenario in that the SoS manager delivers not the nearest and available
Hospital information, but the position of the nearest Hospital of the requested Firefighters or Ambulances.
The second bug (i.e., collaboration fault 2) adds a deadlock fault in the collaboration of the three CSs
of the SoS manager, Ambulances, and Bridgehead; thus, ambulances cannot receive the messages from
SoS Manager even if there exist patients in the bridgehead. For example, the deadlock fault among the
Bridgehead-SoS manager-Ambulance prevents the three CSs from sharing patient arrival information,
resulting in the failure of achieving a 90% patient treatment rate. The third one causes a failure scenario
in that Bridgehead cannot recognize that the Ambulances arrive at the Bridgehead. The fourth bug
scenario injects fault into the logic that more than one firefighter finds the same patient. The last buggy
scenario causes a failure that Bridgehead can not recognize that the Firefighters transport patients. The
detailed information of the injected faults containing the Context–Triggering event–Symptom analysis
results and the specific location of faults in the protocol code are described in the open SIMVA-SoS

49

Figure 5.8: Illustrative example of Collaboration Protocol of MCI-R SoS in SIMVA-SoS

repository4.

5.4 Drone Swarming Dataset by SwarmLab

As a representative example of implicit collaboration, we utilized a drone swarming simulator,
SwarmLab [11]. SwarmLab provided a MATLAB-based simulation module and GUI setting for a single
drone and swarming simulation. In SwarmLab, there exist two drone swarming algorithms: Vasarhe-
lyi [67] and Olfati-saber [167]. For example, the final velocity calculation method, V d

i , of Vasarhelyi
algorithm is defined as follows:

V d
i =

Vi

|Vi|
V flock + V rep

i + V frict
i +

∑
s

V wall
is +

∑
s

V obstacle
is

V d
i =

V d
i

|V d
i |

min|V d
i |, V max

where Vi is a constant flight value of a drone with id i, V flock is a short-range collision avoidance speed
value, V firct is a middle-range speed value to minimize the velocity difference in the given distance,
V wall is a long-range speed value to maintain area of swarms based on the local center of mass, V obstacle

is a speed value calculated to avoid the obstacle of a drone, and V max is a constant max speed value of
a drone. We have utilized both algorithms to generate the experimental dataset for drone swarming.

Because there exists any open dataset that investigates the failures of drone swarming based on the
simulation to the best of our knowledge, we generated several drone swarming failures scenarios based on
the collision test scenarios in SwarmLab5. Based on the collision test scenarios, we have generated several
patterns of failure scenarios and investigated the patterns to identify the root causes of the collision of
drone swarming in the drone swarming algorithm.

4https://github.com/psumin/SoS-simulation-engine
5https://github.com/lis-epfl/swarmlab

50

Chapter 6. Experiment

6.1 Experiment Design

6.1.1 Research Questions and Evaluation Metrics

The goal of our experiment is to demonstrate the efficacy and accuracy of the proposed approach
based on the three major outputs: extracted patterns, clustered failed logs, and localized codes. We
have utilized three target systems in this experiment: platooning SoS, mass casualty incident-response
(MCI-R) SoS, and drone swarming SoS.

Platooning SoS. Table 6.1 explains the overall summary of the two target systems. For the
platooning SoS, we utilized the PLTBench dataset [42], which provides the investigation results (e.g.,
failure occurrence context, symptoms, and code-level bugs) and classified logs of collaboration failures
in platooning SoS. The PLTBench dataset provides 10 scenarios (i.e., classes) and six bugs of platooning
collaboration failures [42] from the analysis of operation success rate property on about 8,000 randomly
generated simulation logs. In addition to the failures and bugs provided by PLTBench, we discovered two
new failure scenarios and identified one bug through this experiment. Thus, a total of 12 failure scenarios
and seven bugs were used in the evaluation. The details of the new failures and the bug are presented in
the following explanation on evaluation metric. The size of LoCs of the platooning collaboration protocol
is 3,596 out of 540,277 in VENTOS [5], encompassing codes only related to executing the platooning
collaboration except for the simulation, configuration, logging, and rendering.

MCI-R SoS. The goal of MCI-R SoS is to rescue and treat as many patients in MCI situations as
possible through the collaboration of firefighters, ambulances, SoS managers, bridgeheads, and hospitals.
SIMVA-SoS [10] provides simulation and verification modules for MCI-R SoS, defining various types of
failure-inducing stimuli, such as communication loss, delay, and specific bugs in code. We found five
types of bugs among the defined stimuli, which are specifically located in the collaboration protocol
code, in SIMVA-SoS. For example, the deadlock fault among the Bridgehead-SoS manager-Ambulance
prevents the three CSs from sharing patient arrival information, resulting in the failure of achieving a
90% patient treatment rate. We generated 2,034 logs including 1,005 failure logs with the faults injected.
The size of LoCs of MCI-R collaboration protocol is 2,364 out of 8,691 in SIMVA-SoS.

Drone Swarming SoS. As explained in Section 5.4, we have applied the proposed approach to
drone swarming SoS scenario provided by SwarmLab. Because there exists no open dataset or benchmark
available for the evaluation, we concentrated on identifying undetected bugs and failure scenarios in
existing drone swarming algorithm. We executed the collision test scenarios in SwarmLab and found
several patterns of collision failures in drone swarming. We will explain the investigation results in the
qualitative analysis of the evaluation in detail.

1https://sites.google.com/se.kaist.ac.kr/pltbench
2https://maniam.github.io/VENTOS/
3https://github.com/psumin/SoS-simulation-engine

51

Table 6.1: Overall statistics of the target systems in experiment

Scenario Platooning SoS [42] MCI-R SoS [10]

Types of CSs 6 types of vehicles 5 independent CSs

Number of logs 7,935 2,034

Number of failed logs 3,985 1,005

Verification property Operation success rate and
collision existence

Treatment rate of patients

Threshold value 0.8/1.0 0.9

Failure scenarios 12*types of scenarios 5 types of injected scenarios

Number of faults 7*faults 5 faults

Collaboration-related
LoCs

3,596 2,634

Benchmark / Simulator PLTBench dataset1 /
VENTOS2

SIMVA-SoS simulator3

* including the number of newly detected failure scenarios and faults

We defined the following research questions for the experiment:

• RQ1. Does the proposed approach accurately extract FII patterns that explain SoS failures?

• RQ2. Do the clustering results yield better clustering precision considering multiple FII patterns?

• RQ3. Does the context mining approach depict the feasible efficiency compared with existing
techniques?

• RQ4. Does the localization method precisely infer the bug location from the patterns?

RQ1 aims to check the accuracy of the proposed pattern mining technique, which prevents informa-
tion loss by considering the major features of SoS interaction logs. Here, we evaluated the accuracy of the
generated patterns by calculating the similarity with the manually created FII patterns, ideal patterns.
The ideal patterns contain critical information about failures, such as failure context, triggering events,
and symptoms. We created the ideal patterns for all platooning SoS failure classes based on the analysis
results in PLTBench in advance.

We defined the pattern identity with weight (PITW) score by extending the difference-based accu-
racy measure, MAE [168, 169], to SoS interaction sequences. PITW is calculated by dividing the number
of identical messages between the ideal and generated patterns (true-positive (TP)) by the length of ideal
patterns (TP + true-negative (TN)). Additionally, instead of giving the same point to all messages in
patterns, weights were given to messages essential for understanding the SoS failures. For example, if
the length of an ideal pattern is 10 and 3 of them are essential and the number of identical messages is
7 with 1 essential message, the PITW score is 0.62 ((7+1)/(10+3)).

Ideal patterns for SoS failures were used as key factors for evaluating the accuracy of FII pattern
mining results. We manually created the ideal patterns by investigating the detailed fault knowledge
of SoS failures in PLTBench. For example, the fault knowledge corresponding to the ideal pattern 4 in
Figure 6.2a is as follows:

Context: During the MiddleFollowerLeave operation,

52

Triggering events: The rear platoon leader requests Merge to the same leader who is simultaneously
requesting Middle FollowerLeave operation.

Symptoms: The rear platoon leader constantly sends
MERGE_REQs to the original leader.

The pattern in Figure 6.2a follows the context of the Middle FollowerLeave operation having two
Splits, thus the pattern contains the sequence of LEAVE_REQ, LEAVE_ACCEPT, and two occurrences of
SPLIT_REQ, SPLIT_DONE, etc. In Figure 6.2a, MERGE_REQ in line 2 indicates the triggering events of simul-
taneous request, and repetitive MERGE_REQs in lines 6 to 7 and 10 to 11 represent the failure symptoms.

During the creation process of ideal patterns, we realized that not all messages composing the
patterns are essential for understanding the failures. For example, MERGE _REQs were actually repeated
three to hundreds of times in simulations. We limited the repetition of the same message in a pattern
to five, but we could classify whether the specific messages are repeated only by the two messages as
presented in Figure 6.2. Likewise, there exist a few CS-level operations for executing Split, such as
CHANGE_PL, GAP_CREATED, and commonly used messages like ACK. However, the information about the
failure situation that should be known through the patterns is not the execution of internal CS-level
operations, but the fact that a specific vehicle was in the process of Split.

Accordingly, we checked the essentialness of the messages based on the specific description of pla-
tooning SoS failures in PLTBench. In the above fault knowledge, the CS-level operations corresponding
to the underlined parts were checked as essential. The example Ideal pattern 4 in Figure 6.2a only
showed the essential parts among the total of 29 messages. We gave weights to the essential messages in
calculating the PITW score.

RQ2 aims to evaluate the overlapping clustering precision regarding the existence of the multiple
failure patterns. With the comparison of clustering precision, we intend to show that our technique is
effective in classifying failed logs that include multiple patterns. Indeed, hundreds of platooning SoS
logs contain multiple failure patterns in PLTBench [42]. We compared Multi-TIME and Multi-BASE
clustering results by considering all possible combinations of hyperparameter values.

To properly evaluate the overlapping clustering precision, an evaluation metric and clustering oracle
(i.e., categorized failed logs) are needed. Hence, we used the categorization results of all failed logs in
the PLTBench dataset. We also implemented the recently proposed F1P score [170]. The F1P is defined
as follows:

F1P (C′, C) =
2FC′,CFC,C′

FC′,C + FC,C′
, where

FX,Y =
1

|X|
∑

xi∈X

pprob(xi, g(xi, Y)) ,

g(x, Y) = {argmax
y

pprob(x, y)|y ∈ Y } ,

pprob(c′, c) =
matched2

|c′| ∗ |c|
.

C denotes a set of formed clusters consisting of clusters c ∈ C, and C ′ denotes a set of ground-truth
clusters consisting of clusters c′ ∈ C ′. |c| denotes the sum of contributions of elements in c, considering
the number of clusters with which an element is involved. matched refers to the sum of contributions of
matched elements of c and c′.

Further, we set the range of hyperparameters used in the overlapping clustering as follows:

• Message delay (delay_threshold): 0.1-1.0 by 0.1

53

• LCS minimum length (len_threshold): 5-20 by 1

• LCS similarity (similarity_threshold): 0.6-1.0 by 0.01

We compared the performance of the two cases in all combinations of the ranges with a time window
set, T = {0, 20, 40, 60, 80}.

RQ3 aims to check the context mining efficiency of the proposed approaches with existing techniques.
The accuracy of extracted failure context patterns is the most important factor for evaluating the context
mining techniques. Nevertheless, the cost to extract the failure context patterns should be figured out to
properly evaluate the performance of the proposed approaches. In this study, we calculated the log-scale
time of the single execution for each experiment group.

RQ4 aims to show the feasibility of end-to-end localization methods that map extracted patterns to
bugs in collaboration protocol code. We evaluated the localization results by the EXAM [171] and Top-
K [87] scores that estimate the reduced cost required in debugging and the accuracy of the localization.
In this study, the EXAM score is defined by (N−n)/N where N is the total rank of the code statements,
and n is the number of code statements to be investigated for resolving the failures. The Top-K score is
defined by the number of faulty statements localized within K-ranks (K = 10, 50, 100).

Here, we compared the proposed fault localization method, SeqOverlaps, with several SBFL methods:
Tarantula [158], Ochiai [159], OP2 [160], Barinel [172], and DStar [161]. To the best of our knowledge,
this is the first study to present a localization method based on patterns. Therefore, we indirectly
evaluated the localization performance with the conventionally used SBFL methods [173]. The spectra
of the SBFL methods are defined by the code coverage of executed ssptatements in the collaboration
protocol files of the target system. Based on the spectra of each failed scenario and passed scenarios, we
applied the SBFL methods to calculate the suspiciousness of each code statement.

Collaboration failures are predominantly caused by the omission of specific logic in the implemented
protocol [42]. The PLTBench dataset particularly contains a few multi-statement bugs, where bug fixes
span multiple statements [173]. In calculating the EXAM score in these types of bugs, we applied
the worst-case debugging scenario, thus all the buggy statements needed to be fixed. Additionally, we
followed the average-rank strategy [174, 148] when multiple statements have the same suspiciousness
score, then all of the codes are treated as the average rank of the statements.

6.1.2 Benchmark Dataset

As it is described in detail in Section 5.2, we mainly utilized the PLTBench dataset in the experiment.
We totally used 16 failure classes generated from about 8,000 randomly generated platooning execution
scenarios. The generated logs are verified by the two goal properties: operation_sucess_rate (OSR) and
collision_existence (COLL). Figure 6.1 describes the failure mode coverage of CPSoS failures by the OSR
and COLL analysis results. The OSR analysis results mainly target the software-software interaction
failure cases. Otherwise, COLL analysis results contain the software-environment impact failures and
comprehensive failures caused by the software-software-environment interactions.

The PLTBench dataset was built via a systematic process involving the manual investigation of
thousands of logs [42]. However, we found that the optimal clustering results of Multi-TIME contained
11.67 clusters on average, which differed from the 10 failure classes in PLTBench. Through the detailed
analysis of the results, we discovered two new failure scenarios related to the existing failure class 4,
simultaneous Leave and Merge, and a new bug that caused one of the failures.

54

Figure 6.1: Failure mode coverage of CPSoS failures by the OSR and COLL analysis results

Figure 6.2a describes the ideal pattern for the failure class 4 in PLTBench4. In the pattern, a yellow
box depicts the failure occurrence context and blue boxes denote the symptoms. In lines 1 to 2, V1 got
requests of Leave and Merge from V1.2 and V1.4, respectively. Lines 3, 4, and 8 specify that the Leave

operation is accepted and two Splits are requested: the first Split is to make space for V1.2 and the
second is to make V1.2 left. In this process, several Merges are continuously requested from V1.4 to V1
and V1.3, such as lines 6, 7, 10, and 11. These meaningless, repetitive requests cause not only delays in
the Leave operation, but also the result that V1.4, the Merge sender, cannot execute other operations.

However, the patterns we found in the experiment have features that are distinct from those in
Figure 6.2a. The new FII pattern 1 in Figure 6.2b seems similar to the ideal pattern 4, but the new
pattern only has one SPLIT_DONE operation. This difference results from the execution of a different
Leave operation. The original failure class 4 is in the context of MiddleFollowerLeave and the new
pattern describes the EndFollowerLeave. Our approach could extract the new pattern 1, because LCS
algorithm generally converges to the sequence with smaller length. This means that the probability of
extracting new pattern 1 is higher than that of the ideal pattern 4. This can also be confirmed by the
fact that PITW scores of Class 4 are lower than those of New Class 1 in 6.4. In addition, the other
reasons affecting to the Class 4 PITW scores are that (1) the pattern of class 4 has the longest length
of 29 among the other patterns and (2) the intervals between the first and second Split were varied
because of the delays.

Figure 6.2c presents a different kind of failure scenario. It has the same context as ideal pattern 4,
where both Leave and Merge are requested. However, in the new failure, Merge is the firstly requested
operation, as depicted in the first red box, and none of the two operations are normally executed as
depicted in lines 3 to 6, 10, and 11. After a few times of omission of the both operations (a.k.a a dead-
lock situation), Leave is finally executed. This failure has totally different symptoms from ideal pattern
4, in that both of the operations are omitted a few times like a dead-lock situation and the Leave is
eventually executed at a significantly delayed time. The reason why it was difficult to detect this failure
scenario in the manual analysis is that the failure class is a great edge-case, where only four out of every
8,000 logs contain the failure. However, our approach has strength in accurately mining such unique
sequences containing several requests of Leave and Merge from thousands of logs. The application of

4https://sites.google.com/se.kaist.ac.kr/pltbench

55

overlapping clustering also contributes to the classification and extraction of the unique failure pattern.

6.1.3 Experiment Group

Through RQ1 to RQ3, we evaluated a total of six approaches for OSR analysis results: CAFCA,
C-FCM [1], TIME, BASE [24], SPADE [175], and LOGLINER[16]. CAFCA, TIME, and BASE are
the approaches proposed by the author. BASE is our previously proposed LCS -based pattern mining
and clustering method that does not fully consider the features of interaction logs. TIME is a context
mining and localization approach focusing on the software-software interaction failures. CAFCA is also a
context mining-based fault localization approach, but targeting not only the software-software interaction
failures, but also the software-environment impact failures and software-software-environment interaction
failures. SPADE is one of the most commonly used frequent sequence mining algorithms in various
domains [25, 107, 108]. LOGLINER is a recently proposed log-flagging algorithm to detect the most
suspicious log lines. We conducted a total of six experimental cases based on the approaches: Single-
TIME, Single-BASE, Single-LOGLINER Multi-TIME, Multi-BASE, and Multi-SPADE. Single indicates
that the approaches were applied to each set of categorized logs for 12 failure classes respectively, thus
focused only on mining patterns without classification. Multi means that the approaches were applied
to the whole log set, including the logs of all failure classes. We repeated the above experimental cases
30 times according to the random order of input logs.

For the COLL analysis results, we compared the proposed CAFCA approach with C-FCM, C-KS2M
[157], C-MTS [104] approaches. To the best of our knowledge, we have not found the existing studies that
can cover the software-software-environment interaction failures. Therefore, we designed the experiment
to compare different clustering approaches based on the same pattern mining and similarity calculation
algorithm proposed in this study.

In RQ4, we compared the proposed fault localization method, SeqOverlaps, with several SBFL
methods: Tarantula [158], Ochiai [159], OP2 [160], Barinel [172], and DStar [161]. To the best of our
knowledge, this is the first study to present a localization method based on patterns. Therefore, we
indirectly evaluated the localization performance with the conventionally used SBFL methods [173].

6.2 Experiment Results

6.2.1 Qualitative Analysis

Qualitative Analysis on Platooning SoS Results

The PLTBench dataset was built via a systematic process involving the manual investigation of
thousands of logs [42]. However, we found that the optimal clustering results of Multi-TIME contained
11.67 clusters on average, which differed from the 10 failure classes in PLTBench. Through the detailed
analysis of the results, we discovered two new failure scenarios related to the existing failure class 4,
simultaneous Leave and Merge, and a new bug that caused one of the failures.

Figure 6.2a describes the ideal pattern for the failure class 4 in PLTBench. In the pattern, a yellow
box depicts the failure occurrence context and blue boxes denote the symptoms. In lines 1 to 2, V1 got
requests of Leave and Merge from V1.2 and V1.4, respectively. Lines 3, 4, and 8 specify that the Leave

operation is accepted and two Splits are requested: the first Split is to make space for V1.2 and the
second is to make V1.2 left. In this process, several Merges are continuously requested from V1.4 to V1

56

and V1.3, such as lines 6, 7, 10, and 11. These meaningless, repetitive requests cause not only delays in
the Leave operation, but also the result that V1.4, the Merge sender, cannot execute other operations.

However, the patterns we found in the experiment have features that are distinct from those in
Figure 6.2a. The new FII pattern 1 in Figure 6.2b seems similar to the ideal pattern 4, but the new
pattern only has one SPLIT_DONE operation. This difference results from the execution of a different
Leave operation. The original failure class 4 is in the context of MiddleFollowerLeave and the new
pattern describes the EndFollowerLeave.

Our approach could extract the new pattern 1, because LCS algorithm generally converges to the
sequence with smaller length. This means that the probability of extracting new pattern 1 is higher than
that of the ideal pattern 4. This can also be confirmed by the fact that PITW scores of Class 4 are lower
than those of New Class 1 in 6.4. In addition, the other reasons affecting to the Class 4 PITW scores
are that (1) the pattern of class 4 has the longest length of 29 among the other patterns and (2) the
intervals between the first and second Split were varied because of the delays.

Figure 6.2c presents a different kind of failure scenario. It has the same context as ideal pattern 4,
where both Leave and Merge are requested. However, in the new failure, Merge is the firstly requested
operation, as depicted in the first red box, and none of the two operations are normally executed at once
as depicted in lines 3 to 6, 10, and 11. After the Leave and Merge operations are omitted a few times
(a.k.a dead-lock situation), Leave is finally executed. The illustrative example of this new failure class
is described in Figure 1.1. This failure has totally different symptoms from ideal pattern 4, in that both
of the operations are omitted a few times and the Leave is eventually executed at a significantly delayed
time. The reason why it was difficult to detect this failure scenario in the manual analysis is that the
failure class is a great edge-case, where only four out of every 8,000 logs contain the failure. However,
our approach has strength in accurately mining such unique sequences containing several requests of
Leave and Merge from thousands of logs. The application of overlapping clustering contributes to the
classification and extraction of the unique failure pattern.

Moreover, we identified a new bug causing the new failure class 2. Figure 6.2d illustrates the
bug location and an example patch of the bug. Line 815 of the “05_PlatoonMg.cc" file in VENTOS
simulator [5], which has a target platooning protocol code, contains one of the buggy codes. The patch
example makes continuous MERGE_REQ not to be repeated so that other operations such as Leave are not
omitted by checking the non-response vehicles’ ids.

Qualitative Analysis on Drone Swarming SoS Results

We have found several failure patterns of collision in drone swarming execution. One of the commonly
detected failure scenarios regardless of the drone swarming algorithms is a failure caused by the increasing
number of maximum neighbor in a swarm. Extracted patterns commonly represent the high number
of neighbors in a communication and vector velocity values towards the center of the mass in a swarm.
Vasalhelyi et al. [68] specified that as the communication range (i.e., maximum neighbor) of swarm
increases, the drone collisions within the swarm tended to decrease. However, the extracted patterns
in this study explain that even if the collision-avoidance speed vector, V rep, is large, the speed vector
for maintaining the local center of mass, V wall, is too large due to the high number of neighbors; thus,
The vector velocity values of the adjacent drones are calculated in the direction in which the drones
approach each other. This failure scenario can be detoured by modifying the main algorithm described
in Section 5.4 to weight appropriate coefficient to each velocity vector.

57

a Ideal pattern for failure class 4 (simultaneous

Leave & Merge requests) b New FII pattern 1 extracted in experiment

c New FII pattern 2 extracted in experiment

d Bug location and patch example for FII pattern 2

failures

Figure 6.2: Example FII patterns and bug location in code

58

6.2.2 Quantitative Analysis

RQ1. Failure Context Pattern Mining Accuracy

a PITW evaluation results on the MCI-R SoS data

b PITW evaluation results on OSR and COLL analysis results of platooning SoS data

Figure 6.3: PITW evaluation results
Figure 6.3 depicts the PITW scores of six experimental cases on the platooning and MCI-R SoS

dataset. We found that our approach, TIME, showed a significantly high accuracy in FII pattern mining.
The first three plots are Single cases that were applied to the categorized sets of logs based on each of
the failure classes in the datasets. The next three results are Multi cases generated by using all the
failed logs as inputs. For the best and average of the PITW values, the TIME approach showed the
highest accuracy in both of the target systems. In particular, the Single-TIME case only achieved the
extraction of FII patterns containing 100% of the ideal patterns in both target systems. The Multi-TIME
case showed higher performance than all of the other approaches. It also exhibited the most comparable
accuracy to Single-TIME in the best and average cases, even though the clustering of failed logs was
also considered. Multi-TIME results in Figure 6.3 indicate that the proposed approach extracted FII
patterns from failed logs that contain 70 to 100% of the fault knowledge in the best case. In the average

59

case, the proposed approach automatically extracted multiple FII patterns containing 30 to 50% of the
fault knowledge.

Even though the BASE approach depicts higher performance than LOGLINER and SPADE in
MCI-R SoS data, the performance of the BASE approach fell short of expectation for both the Single
and Multi cases in the platooning dataset. We decided that the point where BASE did not consider
the temporal features of interactions had serious effects on the analysis of a considerable number of
interaction logs. Consequently, BASE exhibited a performance difference compared to TIME in both of
the Single and Multi case in both target systems.

The results of LOGLINER and SPADE were also lower than those of TIME but exhibited a lower
deviation of accuracy despite the random input order. This is because the key algorithm in the approaches
is the counting of specific elements and sequences, thus the results of pattern mining are scarcely affected
by the input order.

Further, the TIME approach demonstrated a high deviation of PITW values, such as deviation
values of 0.9 for Single and 0.8 for Multi cases on average, as shown in Figure 6.3. This demonstrates
that the proposed approach is relatively sensitive to the order of inputs. This technical issue requires to
be solved to increase the average performance of FII pattern mining. Nevertheless, the TIME approach
presented the highest pattern mining accuracy on average. We also found that the TIME approach
exhibited the highest performance of mining FII patterns in most of the failure classes in Figure 6.4.
For some MCI-R failure scenarios, Multi-BASE depicts higher PITW values than Multi-TIME. This is
because the Multi-BASE approach generated patterns with hundreds of lengths; thus, the parts of the
ideal patterns were included with a high probability. This issue is explained in detail in Section 6.2.2.

In the COLL analysis results, CAFCA approach achieved the highest average PITW score than
other existing techniques. All the experiment group has achieved the maximum values close to 1.0,
even considering the classification of the multiple failures. C-KS2M approach showed the lowest average
PITW score, even the approach is focusing on fuzzy clustering of the sequential data. CAFCA presented
not only the highest average PITW score, but also achieved the lowest deviation of the accuracy by the
random inputs than other studies.

Findings. The CAFCA approach presented the highest accuracy on the mining of failure context
patterns in both of OSR and COLL analysis results.

60

Figure 6.4: PITW evaluation results of all failures scenarios in platooning and MCI-R SoS

61

RQ2. Overlapping Clustering Precision

We evaluated the efficacy of our clustering approach considering the extraction of multiple failure
patterns in a single log. We utilized the F1P score, which calculates the precision of overlapping clustering
results based on the number of pair-wised TP, TN, false-positive (FP), and false-negative (FN) elements
compared with the ground-truth clustering results [170].

Figure 6.5: Overlapping clustering precision accuracy evaluation results on MCI-R and platooning SoS
analysis results

Figure 6.5 demonstrates the F1P evaluation results of 30 random inputs of the two clustering ap-
proaches on the two target systems. The y-axis denotes the F1P score values described in Section 6.2.1.
In the overall performance distribution according to the hyperparameter options, the TIME surpassed
the BASE approach. Particularly, TIME clustering showed an F1P score (0.78) that was almost four
times higher than that of BASE (0.22) for the best score on the platooning dataset and achieved 90% of
overlapping clustering precision on the MCI-R SoS dataset. This indicates that the TIMESim and TIME-
Len metrics and the TIME clustering process proposed in this study fully considered the characteristics
of SoS interaction logs, enabling sophisticated classification of multiple failure patterns.

We discovered two new failure classes in the platooning dataset based on the clustering results. We
found that the average number of clusters for the best F1P options was 11.67, while the PLTBench
dataset only contains 10 types of failure scenarios. Consequently, we inferred two new failure scenarios
that have distinguishing features on context and symptoms compared to existing scenarios. The details
of the new patterns are described in Section 6.2.1.

In COLL analysis results, CAFCA depicted the highest F1P score in both of the best and average
options of the F1P score. Even C-KS2M showed the lowest accuracy in the failure context mining
accuracy, C-KS2M did not show the lowest overlapping clustering precision than other studies. C-MTS
showed the lowest F1P scores in both of the best and average options of the F1P score. This indicates
that the C-MTS and C-KS2M approaches have strengths on mining and clustering specific failure classes.
Otherwise, CAFCA and C-FCM presented the higher F1P scores and pattern mining accuracy at the
same time and have strengths on mining diverse failure cases than C-MTS and C-KS2M.

Findings. The proposed CAFCA similarity metrics and clustering process showed significantly
high overlapping clustering precision than other existing studies.

62

RQ3. Failure Context Mining Efficiency

Figure 6.6 depicts the log-scale running time for each single execution of the approaches. In OSR
analysis results, TIME and BASE that only utilized the software-software interaction data showed much
efficient time on average than C-FCM and CAFCA approaches that utilized both the software-software
interaction data and software-environment interaction data. This trade-off is inevitable for the analysis
approaches. However, the TIME approach showed highly distributed time efficiency than other studies;
thus, by the hyperparameter settings, TIME needs much cost than the approaches handling both the
software interaction and environment sensor data. Particularly, the worst time efficiency was achieved by
the TIME approach. This results indicate that for analyzing the failures caused by the software-software
interactions, techniques focusing on the interaction data showed the best efficiency on average, but the
cost efficiency can be adversely affected by the hyperparameter settings.

Figure 6.6: Context mining efficiency in log-scale time on OSR and COLL analysis

In COLL analysis, C-FCM showed the best efficiency on average than other approaches. This is
because the CAFCA and C-KS2M utilized the pair-wised similarity evaluation in the fuzzy objective
function; thus, the CAFCA and C-KS2M have the time complexity of O(N2), where N denotes the
total number of data element while C-FCM has the time complexity of O(C ∗N), where C denotes the
number of clusters. The worst time efficiency was presented by the C-MTS approach, because the MTS
approach compared the all time segment of one data element with the all time segment of the other data
element for each similarity calculation.

Findings. The proposed context mining approach in CAFCA presented the feasible time efficiency
in COLL analysis, but inevitably showed worse efficiency than the techniques focusing on software
interaction data in software-software interaction failures.

63

RQ4. Localization Efficacy

As the last evaluation factor, we checked the feasibility of the pattern-based fault localization by
comparing the proposed localization method with the existing SBFL methods. We applied the SBFL
methods to the code coverage of each failed log category with all coverage of passed logs. Similarly, our
localization method, SeqOverlap, was applied to each pattern of the failure classes.

Figure 6.7: EXAM analysis results on bugs causing collaboration failures in platooning and MCI-R SoS

Figure 6.7 depicts the EXAM scores of the localization methods on each failure class of platooning
and MCI-R SoS. The higher the EXAM score, the lower the cost required for finding bugs, which means
that the buggy codes are accurately localized at high ranks. Based on Figure 6.7, we confirmed that
SeqOverlap has the highest EXAM score in all failure classes in both target systems. The difference in
the EXAM score between the SeqOverlap and SBFL methods was 24% on average. In particular, the
SBFL methods achieved lower EXAM scores on average in MCI-R SoS than those in platooning SoS.
This is because most of the collaboration protocol codes are covered by both failed and passed scenarios;
thus, the SBFL methods calculate a myriad of the same rank codes in results. This indicates that
the pattern-based fault localization method showed feasible performance in localizing the root causes of
collaboration failures in the two target systems.

SBFL methods are based on the suspiciousness calculation of code execution coverage. Coverage-
based methods do not consider the execution order and timing of operations during the collaboration,
but only consider whether a code line is covered according to the execution of operations. However,
most of the collaboration protocol code can be covered in a SoS simulation regardless of pass and
failure results because several CS agents (e.g., vehicles and firefighters) conduct various collaborative
operations autonomously. Consequently, coverage-based SBFL methods cannot infer the significant
difference of code coverage of the passed and failed executions of collaboration protocols. This explains
why SBFL methods showed lower localization accuracy than that of our method on the time/order-
sensitive collaboration protocols.

The EXAM scores of failure class 9 and new class 2 are lower than other results in Figure 6.7. This is
because the buggy code lines of the failure classes are multiple lines distributed among various functions.
For example, the buggy code lines of the failure class 9 are located in lines 1332, 1473, and 1769, which
are placed in all different function blocks. The corresponding failures can be resolved by fixing all the
buggy statements; thus, we used the last rank in which all statements were found to calculate the EXAM

64

Table 6.2: Top-K analysis results on the bugs of collaboration failures

K Tarantula Ochiai OP2 Barinel Dstar SeqOverlap

10 0 0 0 0 0 2
50 0 3 1 1 1 14
100 0 6 8 3 6 15

score. In the multi-statement bugs, our pattern-based code localization method achieved a 40.39% higher
EXAM score on average than other SBFL methods.

Table 6.2 describes the Top-K results of the SBFL and the proposed localization methods. Top-K
scores indicate the accuracy of the localization results by counting the number of faulty statements within
K-ranks. Higher values are better for this metric. The proposed SeqOverlap method achieved the best
Top-K score for every K value in Table 6.2. Among all the methods, SeqOverlap solely ranked the buggy
statements in the Top 10 and ranked most of the failure cases in Top 50 and 100, except for the two
distributed multi-statement bugs. Ochiai and OP2 accomplished the highest Top-50 and Top-100 score
among the SBFL methods, respectively. Tarantula failed to rank the bugs within Top 100 for all failure
classes.

Findings. The pattern-based fault localization approach achieved the highest EXAM and Top-K
scores for all failure classes, including the distributed multi-statement bugs.

We explained the primary threats to the validity of the experiment using the internal, construct,
and conclusion validity [176]. We elucidated the internal validity of the PITW score utilized in the RQ1
evaluation and the case of bugs in the CSs. The construct validity is explained by the target systems
used in the experiment. Finally, we explicated the conclusion validity of the number of logs with the
hyperparameter settings of the proposed approach.

Internal Validity. We defined the PITW score to evaluate the accuracy of the generated patterns
with the manually created ideal patterns based on the fault knowledge. In Section 6.1, we represented the
PITW score by TP / (TP + TN), where TP indicates the number of identical messages in both patterns
and TN indicates the number of messages in ideal patterns, but not in the generated patterns. Here,
we decided not to add FP value in the PITW score, which is the number of messages in the generated
patterns, but not in the ideal patterns. It is because the ideal patterns are not the axiom for describing
the failure scenarios and the generated patterns could point to the unpredictable context or symptoms.

We found one technical issue with the PITW score in Section 6.2. In Figure 6.4, the Multi-BASE
approach in MCI-R scenarios achieved higher PITW scores than the proposed Multi-TIME approach
because Multi-BASE generated patterns with lengths of hundred, highly increasing the probability of
matching with ideal patterns. However, the patterns with lengths of several hundred are narrowly ad-
vantageous for SoS managers to build fault knowledge on collaboration failures. We confirmed that the
PITW score must include the lengths of the generated patterns for evaluating the practicality. We plan
to design and utilize the improved PITW score metric in future studies.

Further, even though the scope of this study is focused on the bugs in the collaboration protocol
codes, there might be some situations where CSs have bugs. We classified this case into two sub-cases:
one where a CS has a bug in executing its autonomous functioning and the other where a collaboration

65

bug is located in the codes of the functioning of CSs by implementation issues. The first case is not
in the scope of this study because we assume that each CS has been sufficiently tested to execute its
autonomous behaviors. In the second case, there could be several issues with implementing SoS based
on black-boxed CSs as described in Section 1. We also found the same scenario where the collaboration
failures occurred because of a bug statement located in the firefighter’s searching code in MCI-R SoS.
Because the firefighter’s searching is the autonomous function of CSs, not included in collaboration with
other CSs, the scenario was not used in this experiment. For this second case, it is assumed that the
extracted patterns will be delivered to the manager of the CS by the independence assumption in SoS.

Construct Validity. One of the most difficult problems faced is the lack of available benchmark
data wherein target systems satisfy the main characteristics of SoS. Hence, we focused on the preva-
lent and open platooning simulator, VENTOS, and generated the experimental dataset, PLTBench, in
advance by the thorough analysis of the collaboration failures [42]. SIMVA-SoS, a simulation-based
verification tool providing MCI-R SoS scenario execution, defined concrete stimuli involving a few ex-
amples of code-level faults that adversely affect the performance of MCI-R SoS [10]. We generated
thousands of logs for the experiment by injecting the most relevant types of faults and stimuli in the
MCI-R collaboration protocol.

We also used the op_success_rate property with 80% of the empirical value. Even though the
criterion was applied in the recent study of StarPlateS, it is insufficient to prove the justification of the
criteria. We examined studies that simulated and verified platooning systems, but most of them used
basic testing criteria for platoons, such as maintenance of platoons until the end of simulation [139, 146],
or verification of a single operation execution [140, 145]. Instead, we attempted to generate cogent
properties for the platooning SoS based on international standards, such as ISO26262 [177]. However,
certain recent studies have reported that the existing standards, such as ISO26262, focus on autonomous
driving, and thus they cannot fully meet the requirements of platooning SoS [143, 9, 144]. In this study,
the op_success_rate was benchmarked based on the Percentage of Successful Request (PSR) used in
the testing of the cloud system [17] and modified for application to the simulation logs of the platooning
system.

In the evaluation, among the various types of logs provided by VENTOS and SIMVA-SoS, only
message-based interaction logs delivered in the network channel were used as input logs for the evaluated
approaches. This indicates that the experiment did not consider logs of individual CSs’ state and
internal variable values, such as vehicle states. Additionally, in evaluating the localization methods, only
collaboration protocol codes were utilized, except for other codes of the CS’s autonomous functioning,
simulation and verification. The approaches were evaluated in an experimental setting that thoroughly
considered the operational and managerial independence of SoS.

Conclusion Validity. The proposed approach has three primary thresholds, delay_thres-hold,
len_threshold, and similarity_threshold, that impact the accuracy of the approach. In the experiment,
we set the ranges of the three hyperparameters by referring to the message request duration setting in
the VENTOS simulator [5], using the LCS length and similarity parameters in existing studies [21].
Based on the ranges, there exist 6,560 combinations of the three hyperparameters. As we repeated the
experiment thirty times, all the combinations were tested.

However, for the results of RQ1, we inferred that the best hyperparameter option did not return the
expected clustering results wherein each pattern contained both occurrence context and failure symp-
tom. Additionally, we show that the cluster patterns 2 and 7 originally depict the same failure scenario.
This was caused by the basic characteristics of LCS -based algorithms, which are vulnerable to mis-

66

allocated elements because they extract patterns including all elements, even misallocated ones. One
way to improve hyperparameter optimization is to assign individual hyperparameter values to clus-
ters. We expect to improve the clustering results qualitatively and quantitatively by optimizing the
hyperparameters for each cluster, but not for the entire cluster.In our study, the difference in precision
performance between the best and worst was approximately doubled, and about 6,500 combinations of
hyperparameters were considered. Therefore, we tried to suggest a general direction for hyperparameter
settings for this proposed technique to increase the practicality of our technique when it is applied to
various domains, including the cases where the hyperparameter optimization through ground-truth is
impossible, owing to sufficient fault knowledge being not provided. We utilized Functional ANOVA (F-
ANOVA) [178], a common hyperparameter importance analysis method used in diverse machine learning
techniques [179, 180, 181, 182].

Fig. 6.8 describes the F-ANOVA test results of this study. We found that the len_threshold,
the threshold for minimum LCS pattern length, had the highest importance on the clustering results
than the other two hyperparameters. The importance value in the table in Fig. 6.8a shows that the
len_threshold has significantly larger values than the other hyperparameters, reflecting the influence of
the hyperparameters on precision performance. The Fig. 6.8d also shows that len_threshold increases
along the x-axis, the F1P precision values in the y-axis are shown to decrease with an obvious negative
correlation.

On the other hand, in the case of the other hyperparameter variables in Fig. 6.8b and 6.8c, we
confirmed that neither variable showed a consistent trend according to the increase or decrease of the
variable values, nor did it have relatively large standard deviation ranges of F1P values, which is a dis-
advantage to the precise estimation of the influence of the variables. We expect that the hyperparameter
effect analysis results may serve as a guideline for the reference of hyperparameter settings in further
studies.

In addition, we found that the order of the input logs affects the accuracy of the proposed approach
in the RQ1 evaluation result in Section 6.2. Because the proposed clustering method is based on the
prevalently used subsequent time-series (STS) clustering for time-series data analysis [21, 97, 98], the
clustering results are prone to be changed by the input orders. Significantly, the proposed clustering
technique is an overlapping clustering meant to classify cascading failures in SoS; thus, the effect of the
input orders was revealed. We plan to improve the proposed clustering technique to fuzzy clustering in
future work to mitigate the impact of the input orders.

We proposed the fault analysis process that includes faulty interaction pattern mining and code
isolation with suspicious rankings to effectively identify the code-level root causes of interaction failures
in platooning SoS. Our approach used two inputs: a set of system execution logs and goal property
checking results for each log. In this study, we implemented the log parser for the log format of VENTOS
and also applied the existing goal property in StarPlateS. We expect that our technique can be applied to
general SoS or various complex CPS systems because our technique is not technically domain-specific for
platooning SoS and only needs communication logs with Passed/Failed tags. To enable the application
to general SoS, a log parser will be required to extract interaction message sequences from particular log
formats and a goal property checking module is also necessary to attach Passed/Failed tags to each log.
We plan to apply our technique to other SoS scenarios, such as a smart warehouse system or intelligent
transportation system, to show the general utility of the proposed approach.

67

Hyperparameter Importance

Similarity_threshold 0.021
Delay_threshold 0.039
Len_threshold 0.867

a Importance values of hyperparameters

Similarity_threshold

F
1
P

P
re

c
is

io
n

b Importance graph of similarity_threshold

Delay_threshold

F
1
P

P
re

c
is

io
n

c Importance graph of delay_threshold

Len_threshold

F
1
P

P
re

c
is

io
n

d Importance graph of len_threshold

Figure 6.8: Hyperparameter importance analysis results

68

Chapter 7. Conclusion

We proposed a context mining-based fault analysis technique for effectively analyzing collaboration
failures in CPSoS. We addressed four issues associated with log anomaly detection, time-series data
analysis, sequence data analysis [24, 25], and graph mining-based fault localization studies for various
systems. Concentrating on the general fault analysis process, including fault detection, understanding on
failure occurrence context generation, root cause localization, root cause identification, our investigation
of the applicability of existing methods to CPSoS collaboration failures indicated that (1) their data
models do not handle both of the discrete and continous data generated in CPSoS execution; (2) they do
not cover the major features required to the sequential analysis of the discrete and continuous data; (3)
have limitations in terms of identifying multiple failure patterns in a single log; and (4) do not provide
an end-to-end solution from failure pattern analysis to the root cause identification.

To address the issues, we proposed a context mining-based fault localization approach composed of
CAFCA failure context mining and clustering approach, and a pattern-based fault localization method,
SeqOverlap. In this thesis, we first defined an Interaction and Environment Model (IEM) to handle the
discrete message logs and continuous sensor logs in CPSoS. Second, we proposed a Context-Aware Failure
pattern-based Clustering Approach (CAFCA) in this study. CAFCA-Longest Common Subsequence
(CAFCA-LCS) pattern mining algorithm that accurately extracts FII patterns by covering the main
features of sequential analysis of the CPSoS logs. Next, the CAFCA contains a Fuzzy-based overlapping
clustering to classify and extract all FII patterns that have occurred during the SoS execution. Finally,
we provide a pattern-based fault localization method that calculates the suspiciousness of collaboration
protocol codes.

In the experiment, the proposed approach achieved the highest pattern mining accuracy compared
with existing pattern mining studies and also yielded an overall improvement in clustering precision
compared with our previous study. Lastly, the localization method achieved a 24% higher localization
accuracy than SBFL methods on average and the highest Top-K score. We expect that the conclusions
of this study can enrich the accurate analysis of CPSoS failures. This study is a first attempt at checking
the feasibility of pattern-based fault localization for such communication-intensive CPSoS. In the next
section, we will describe the remaining works of this dissertation in detail.

69

Chapter 8. Future Work

8.1 Localization Method for Distributed Multi-Statement Bugs

In the empirical analysis of the platooning system, we found that most of the failures are caused by
the logic errors, such as missing logic and incorrect logic in Section 5.1. Faults in integration-level rules
and logic are often multi-location as they may span multiple lines of codes [70]. In the evaluation of the
localization efficacy, we found that existing fault localization techniques have relatively less effectiveness
on distributed multi-statement bugs in Section 6.2.2.

We tried to survey existing studies that focused on localizing the multi-statement bugs. However,
existing studies that deal with multi-statement bugs only select the best, average, and worst options in
the evaluation process. To the best of our knowledge, we have found a recent study that localizes the
multi-statement bugs based on the extended spectrum-based fault localization technique (SBFL) for the
faulty paths of the integration rule [70].

To effectively localize the distributed multi-statement bugs in CPSoS, we are going to improve the
fault localization metric by extending SBFL that utilizes both of the Pass/Fail results. We will extend
the spectrum of the fault localization to a sequence of executed code lines from the patterns to accurately
localize the distributed multi-statement bugs in CPSoS.

8.2 Localization Method for Implicit Collaboration Code

Even though we proposed a localization method, SeqOverlap, for the explicit collaboration protocol
code, the localization method for the implicit collaboration is also needed to effectively reduce the cost
of identifying the root causes of implicit collaboration failures. The primary difference between the
two collaboration implementations is that the implicit collaboration algorithm mostly depends on the
environmental sensor data rather than the message-based communication data. For example, in drone
swarming SoS, the main factors for calculating the vector velocity of each drone are the current distances
with and previous speed vectors of neighbor drones. Because message-based communication is only
utilized to exchange the current distances and speed values between the drones, it is infeasible to apply
the proposed localization method, SeqOverlap, to the implicit collaboration protocol code.

Moreover, unlike the explicit collaboration protocol code that can specify the code execution cov-
erage according to the execution of collaborative operations (e.g., MERGE_REQ, LEAVE_REQ), in
implicit collaboration, code execution coverage of the collaboration algorithm code does not vary greatly
depending on what environmental values are given. No matter what environment state is given as in-
puts, most of the code statement would be executed in the vasalhelyi algorithm described in Section 5.4
because the algorithm calculates V values for deciding the final vector velocities of each drone. Hence,
different localization metrics that sufficiently contemplate the characteristics of implicit collaboration are
needed.

70

Bibliography

[1] J. C. Bezdek, R. Ehrlich, W. Full, Fcm: The fuzzy c-means clustering algorithm, Computers &
geosciences 10 (2-3) (1984) 191–203.

[2] Z. Shi, Y. Xie, W. Xue, Y. Chen, L. Fu, X. Xu, Smart factory in industry 4.0, Systems Research
and Behavioral Science 37 (4) (2020) 607–617.

[3] G. Trencher, Towards the smart city 2.0: Empirical evidence of using smartness as a tool for
tackling social challenges, Technological Forecasting and Social Change 142 (2019) 117–128.

[4] A. Zambrano, M. Zambrano, E. Ortiz, X. Calderón, M. Botto-Tobar, An intelligent transportation
system: The quito city case study, International Journal on Advanced Science, Engineering and
Information Technology 10 (2) (2020) 507–519.

[5] M. Amoozadeh, H. Deng, C.-N. Chuah, H. M. Zhang, D. Ghosal, Platoon Management with
Cooperative Adaptive Cruise Control Enabled by VANET, Vehicular communications 2 (2) (2015)
110–123.

[6] F. Petitdemange, I. Borne, J. Buisson, Modeling system of systems configurations, in: 2018 13th
Annual Conference on System of Systems Engineering (SoSE), IEEE, 2018, pp. 392–399.

[7] Z. Lü, Y. Lü, M. Yuan, Z. Wang, A heterogeneous large-scale parallel scada/dcs architecture in 5g
ogce, in: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI), IEEE, 2017, pp. 1–7.

[8] F. Rossi, S. Bandyopadhyay, M. T. Wolf, M. Pavone, Multi-agent algorithms for collective behavior:
A structural and application-focused atlas, arXiv preprint arXiv:2103.11067 (2021).

[9] P. E. Group, Enabling safe multi-brand platooning for europe (ensemble), [Online; accessed 26-
May-2022].
URL https://platooningensemble.eu/

[10] S. Park, Y.-j. Shin, S. Hyun, D.-H. Bae, Simva-sos: Simulation-based verification and analysis for
system-of-systems, in: 2020 IEEE 15th International Conference of System of Systems Engineering
(SoSE), IEEE, 2020, pp. 575–580.

[11] E. Soria, F. Schiano, D. Floreano, Swarmlab: A matlab drone swarm simulator, in: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE, 2020, pp. 8005–8011.

[12] R. Kazman, K. Schmid, C. B. Nielsen, J. Klein, Understanding patterns for system of systems
integration, in: 2013 8th International Conference on System of Systems Engineering, IEEE, 2013,
pp. 141–146.

[13] M. Augustine, O. P. Yadav, R. Jain, A. Rathore, Cognitive map-based system modeling for iden-
tifying interaction failure modes, Research in Engineering Design 23 (2) (2012) 105–124.

71

https://platooningensemble.eu/
https://platooningensemble.eu/

[14] M. Landauer, M. Wurzenberger, F. Skopik, G. Settanni, P. Filzmoser, Dynamic log file analysis:
An unsupervised cluster evolution approach for anomaly detection, computers & security 79 (2018)
94–116.

[15] T. Schmidt, F. Hauer, A. Pretschner, Automated anomaly detection in cps log files, in: Interna-
tional Conference on Computer Safety, Reliability, and Security, Springer, 2020, pp. 179–194.

[16] A. Amar, P. C. Rigby, Mining historical test logs to predict bugs and localize faults in the test
logs, in: 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE,
2019, pp. 140–151.

[17] C. Sauvanaud, M. Kaâniche, K. Kanoun, K. Lazri, G. D. S. Silvestre, Anomaly detection and
diagnosis for cloud services: Practical experiments and lessons learned, Journal of Systems and
Software 139 (2018) 84–106.

[18] M. Du, F. Li, G. Zheng, V. Srikumar, Deeplog: Anomaly detection and diagnosis from system logs
through deep learning, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1285–1298.

[19] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang, Q. Cheng, Z. Li, et al.,
Robust log-based anomaly detection on unstable log data, in: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2019, pp. 807–817.

[20] G. Liu, L. Zhu, X. Wu, J. Wang, Time series clustering and physical implication for photovoltaic
array systems with unknown working conditions, Solar Energy 180 (2019) 401–411.

[21] G. Soleimany, M. Abessi, A new similarity measure for time series data mining based on longest
common subsequence, American Journal of Data Mining and Knowledge Discovery 4 (1) (2019)
32.

[22] M. Y. Choong, L. Angeline, R. K. Y. Chin, K. B. Yeo, K. T. K. Teo, Modeling of vehicle trajectory
clustering based on lcss for traffic pattern extraction, in: 2017 IEEE 2nd International Conference
on Automatic Control and Intelligent Systems (I2CACIS), IEEE, 2017, pp. 74–79.

[23] D. Kleyko, E. Osipov, N. Papakonstantinou, V. Vyatkin, Hyperdimensional computing in industrial
systems: the use-case of distributed fault isolation in a power plant, IEEE Access 6 (2018) 30766–
30777.

[24] S. Hyun, J. Song, S. Shin, Y.-M. Baek, D.-H. Bae, Pattern-based analysis of interaction failures in
systems-of-systems: a case study on platooning, in: 2020 27th Asia-Pacific Software Engineering
Conference (APSEC), IEEE, 2020, pp. 326–335.

[25] R. Millham, I. E. Agbehadji, H. Yang, Pattern mining algorithms, in: Bio-inspired Algorithms for
Data Streaming and Visualization, Big Data Management, and Fog Computing, Springer, 2021,
pp. 67–80.

[26] M. Gaber Abd El-Wahab, A. E. Aboutabl, W. M. EL Behaidy, Graph mining for software fault
localization: An edge ranking based approach, Journal of Communications Software and Systems
13 (4) (2017) 178–188.

72

[27] S. Parsa, S. A. Naree, N. E. Koopaei, Software fault localization via mining execution graphs,
in: International Conference on Computational Science and Its Applications, Springer, 2011, pp.
610–623.

[28] J. Qian, X. Ju, X. Chen, H. Shen, Y. Shen, Agfl: A graph convolutional neural network-based
method for fault localization, in: 2021 IEEE 21st International Conference on Software Quality,
Reliability and Security (QRS), IEEE, 2021, pp. 672–680.

[29] H. Zhong, H. Mei, Learning a graph-based classifier for fault localization, Science China Information
Sciences 63 (6) (2020) 1–22.

[30] T. A. Henderson, A. Podgurski, Behavioral fault localization by sampling suspicious dynamic con-
trol flow subgraphs, in: 2018 IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), IEEE, 2018, pp. 93–104.

[31] J. Chu, T. Yu, J. Huffman Hayes, X. Han, Y. Zhao, Effective fault localization and context-aware
debugging for concurrent programs, Software Testing, Verification and Reliability 32 (1) (2022)
e1797.

[32] H. A. de Souza, D. Mutti, M. L. Chaim, F. Kon, Contextualizing spectrum-based fault localization,
Information and Software Technology 94 (2018) 245–261.

[33] X. Yu, J. Liu, Z. J. Yang, X. Liu, X. Yin, S. Yi, Bayesian network based program dependence graph
for fault localization, in: 2016 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), IEEE, 2016, pp. 181–188.

[34] J. Zhang, R. Xie, W. Ye, Y. Zhang, S. Zhang, Exploiting code knowledge graph for bug localization
via bi-directional attention, in: Proceedings of the 28th International Conference on Program
Comprehension, 2020, pp. 219–229.

[35] H. He, J. Ren, G. Zhao, H. He, Enhancing spectrum-based fault localization using fault influence
propagation, IEEE Access 8 (2020) 18497–18513.

[36] H. Gao, B. Cheng, J. Wang, K. Li, J. Zhao, D. Li, Object classification using cnn-based fusion of
vision and lidar in autonomous vehicle environment, IEEE Transactions on Industrial Informatics
14 (9) (2018) 4224–4231.

[37] C. Liu, D. Zou, P. Luo, B. B. Zhu, H. Jin, A heuristic framework to detect concurrency vulnera-
bilities, in: Proceedings of the 34th Annual Computer Security Applications Conference, 2018, pp.
529–541.

[38] M. Muhammad, G. A. Safdar, Survey on existing authentication issues for cellular-assisted v2x
communication, Vehicular Communications 12 (2018) 50–65.

[39] U. Nakarmi, M. Rahnamay Naeini, M. J. Hossain, M. A. Hasnat, Interaction graphs for cascading
failure analysis in power grids: A survey, Energies 13 (9) (2020) 2219.

[40] T. J.-M. Meango, M.-S. Ouali, Failure interaction model based on extreme shock and markov
processes, Reliability Engineering & System Safety 197 (2020) 106827.

73

[41] H. Jiang, X. Li, Z. Yang, J. Xuan, What causes my test alarm? automatic cause analysis for test
alarms in system and integration testing, in: 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), IEEE, 2017, pp. 712–723.

[42] S. Hyun, L. Liu, H. Kim, E. Cho, D.-H. Bae, An empirical study of reliability analysis for platooning
system-of-systems, in: 2021 IEEE 21st International Conference on Software Quality, Reliability
and Security Companion (QRS-C), IEEE, 2021, pp. 506–515.

[43] D. Drozdov, V. Dubinin, S. Patil, V. Vyatkin, A formal model of iec 61499-based industrial au-
tomation architecture supporting time-aware computations, IEEE Open Journal of the Industrial
Electronics Society 2 (2021) 169–183.

[44] Y. Zhou, X. Gong, B. Li, M. Zhu, A framework for cps modeling and verification based on dl,
in: 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS),
IEEE, 2018, pp. 173–179.

[45] K. Halba, E. Griffor, A. Lbath, A. Dahbura, A framework for the composition of iot and cps capabil-
ities, in: 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC),
IEEE, 2021, pp. 1265–1272.

[46] D. Calvaresi, Y. Dicente Cid, M. Marinoni, A. F. Dragoni, A. Najjar, M. Schumacher, Real-time
multi-agent systems: rationality, formal model, and empirical results, Autonomous Agents and
Multi-Agent Systems 35 (1) (2021) 1–37.

[47] Y. Zhao, J. Liu, E. A. Lee, A programming model for time-synchronized distributed real-time
systems, in: 13th IEEE Real Time and Embedded Technology and Applications Symposium
(RTAS’07), IEEE, 2007, pp. 259–268.

[48] C. Sun, L. Zhang, Design and modeling of intelligent home security monitoring system based on
cps, in: 2021 IEEE 12th International Conference on Software Engineering and Service Science
(ICSESS), IEEE, 2021, pp. 186–189.

[49] K. H. Lee, J. H. Hong, T. G. Kim, System of systems approach to formal modeling of cps for
simulation-based analysis, Etri Journal 37 (1) (2015) 175–185.

[50] N. Chen, S. Geng, L. Li, Modeling and verification of cps based on uncertain hybrid timed au-
tomaton, in: 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on
Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), IEEE, 2021,
pp. 971–978.

[51] A. Bouheroum, D. Benmerzoug, S. M. Hemam, F. Belala, From ca-brs to bpmn: Formal approach
for modeling adaptive security in cyber-physical systems., in: TACC, 2021, pp. 149–163.

[52] S. Luna, A. Lopes, H. Y. S. Tao, F. Zapata, R. Pineda, Integration, verification, validation, test,
and evaluation (ivvt&e) framework for system of systems (sos), Procedia Computer Science 20
(2013) 298–305.

[53] N. Akhtar, S. Khan, Formal architecture and verification of a smart flood monitoring system-of-
systems., Int. Arab J. Inf. Technol. 16 (2) (2019) 211–216.

74

[54] A. Rehman, N. Akhtar, O. H. Alhazmi, Formal modeling, proving, and model checking of a flood
warning, monitoring, and rescue system-of-systems, Scientific Programming 2021 (2021).

[55] J. Fitzgerald, J. Bryans, R. Payne, A formal model-based approach to engineering systems-of-
systems, in: Working Conference on Virtual Enterprises, Springer, 2012, pp. 53–62.

[56] R. Payne, J. Bryans, J. Fitzgerald, S. Riddle, Interface specification for system-of-systems archi-
tectures, in: 2012 7th International Conference on System of Systems Engineering (SoSE), IEEE,
2012, pp. 567–572.

[57] C. Wiecher, J. Greenyer, C. Wolff, H. Anacker, R. Dumitrescu, Iterative and scenario-based re-
quirements specification in a system of systems context, in: International Working Conference on
Requirements Engineering: Foundation for Software Quality, Springer, 2021, pp. 165–181.

[58] J. Bryans, R. Payne, J. Holt, S. Perry, Semi-formal and formal interface specification for system
of systems architecture, in: 2013 IEEE International Systems Conference (SysCon), IEEE, 2013,
pp. 612–619.

[59] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, D. Ding, Fault analysis and debugging of microser-
vice systems: Industrial survey, benchmark system, and empirical study, IEEE Transactions on
Software Engineering 47 (2) (2018) 243–260.

[60] Y.-M. Baek, J. Song, Y.-J. Shin, S. Park, D.-H. Bae, A meta-model for representing system-of-
systems ontologies, in: 2018 IEEE/ACM 6th International Workshop on Software Engineering for
Systems-of-Systems (SESoS), IEEE, 2018, pp. 1–7.

[61] A. A. Shchurov, A formal model of distributed systems for test generation missions, arXiv preprint
arXiv:1410.1729 (2014).

[62] V. Srivastava, R. S. Pandey, A reward based formal model for distributed software defined networks,
Wireless Personal Communications 116 (1) (2021) 691–707.

[63] Y. Kubiuk, K. Kharchenko, Design and implementation of the distributed system using an orches-
trator based on the data flow paradigm, Technology audit and production reserves 3 (2) (2020)
53.

[64] L. Bin, W. Xingmin, S. Jun, Reliability evaluation method of dds-based distributed system, in: 2019
3rd International Conference on Electronic Information Technology and Computer Engineering
(EITCE), IEEE, 2019, pp. 2028–2033.

[65] I. Beschastnikh, P. Liu, A. Xing, P. Wang, Y. Brun, M. D. Ernst, Visualizing distributed system
executions, ACM Transactions on Software Engineering and Methodology (TOSEM) 29 (2) (2020)
1–38.

[66] F. Neves, N. Machado, R. Vilaça, J. Pereira, Horus: Non-intrusive causal analysis of distributed
systems logs, in: 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), IEEE, 2021, pp. 212–223.

[67] G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz, T. Vicsek, Outdoor
flocking and formation flight with autonomous aerial robots, in: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2014, pp. 3866–3873.

75

[68] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, T. Vicsek, Optimized flocking of
autonomous drones in confined environments, Science Robotics 3 (20) (2018) eaat3536.

[69] C. Virágh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai, T. Nepusz, T. Vicsek, Flocking
algorithm for autonomous flying robots, Bioinspiration & biomimetics 9 (2) (2014) 025012.

[70] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, T. Stifter, Automated repair of feature
interaction failures in automated driving systems, in: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2020, pp. 88–100.

[71] G. Asaamoning, P. Mendes, D. Rosário, E. Cerqueira, Drone swarms as networked control systems
by integration of networking and computing, Sensors 21 (8) (2021) 2642.

[72] M. Schranz, M. Umlauft, M. Sende, W. Elmenreich, Swarm robotic behaviors and current appli-
cations, Frontiers in Robotics and AI 7 (2020) 36.

[73] F. Saffre, H. Hildmann, H. Karvonen, The design challenges of drone swarm control, in: Interna-
tional Conference on Human-Computer Interaction, Springer, 2021, pp. 408–426.

[74] L. Marsh, C. Onof, Stigmergic epistemology, stigmergic cognition, Cognitive Systems Research
9 (1-2) (2008) 136–149.

[75] T. G. Lewis, Cognitive stigmergy: A study of emergence in small-group social networks, Cognitive
Systems Research 21 (2013) 7–21.

[76] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Or-
landi, G. Parisi, A. Procaccini, et al., Interaction ruling animal collective behavior depends on
topological rather than metric distance: Evidence from a field study, Proceedings of the national
academy of sciences 105 (4) (2008) 1232–1237.

[77] J. Dias-Ferreira, Bio-inspired self-organising architecture for cyber-physical manufacturing systems,
Ph.D. thesis, Kungliga Tekniska högskolan (2016).

[78] A. Forestiero, G. Spezzano, D. Talia, Swarm-based algorithms for decentralized clustering and
resource discovery in grids, Ph.D. thesis (2012).

[79] D. J. Brooks, A human-centric approach to autonomous robot failures, Ph.D. thesis, University of
Massachusetts Lowell (2017).

[80] A. Sutcliffe, G. Rugg, A taxonomy of error types for failure analysis and risk assessment, Interna-
tional Journal of Human-Computer Interaction 10 (4) (1998) 381–405.

[81] J. Ahlgren, M. E. Berezin, K. Bojarczuk, E. Dulskyte, I. Dvortsova, J. George, N. Gucevska,
M. Harman, R. Laemmel, E. Meijer, et al., Wes: Agent-based user interaction simulation on
real infrastructure, in: Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, 2020, pp. 276–284.

[82] V. Vijayan, S. K. Chaturvedi, R. Chandra, A failure interaction model for multicomponent re-
pairable systems, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk
and Reliability 234 (3) (2020) 470–486.

76

[83] L. Yang, Y. Zhao, X. Ma, Group maintenance scheduling for two-component systems with failure
interaction, Applied Mathematical Modelling 71 (2019) 118–137.

[84] L. Li, M. Lu, T. Gu, Extracting interaction-related failure indicators for online detection and
prediction of content failures, in: 2018 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), IEEE, 2018, pp. 278–285.

[85] A. Avizienis, J.-C. Laprie, B. Randell, Fundamental concepts of dependability, Department of
Computing Science Technical Report Series (2001).

[86] L. Xu, Y. Chen, F. Briand, F. Zhou, M. Givanni, Reliability measurement for multistate manufac-
turing systems with failure interaction, Procedia CIRP 63 (2017) 242–247.

[87] C. Parnin, A. Orso, Are automated debugging techniques actually helping programmers?, in: Pro-
ceedings of the 2011 international symposium on software testing and analysis, 2011, pp. 199–209.

[88] K.-M. Seo, K.-P. Park, Interface data modeling to detect and diagnose intersystem faults for
designing and integrating system of systems, Complexity 2018 (2018).

[89] S. Wadhai, M. Wadekar, S. Junankar, C. Rathod, V. Hingane, A. A. Zade, Detection of power grid
synchronization failure by sensing bad voltage and frequency (2017).

[90] T. Fu, Studies on memory consistency and synchronization: failure detection in parallel programs,
Ph.D. thesis, Concordia University (1998).

[91] X. Q. Tang, Q. Li, G. Lu, H. Xiong, F. He, An application-level method of arbitrary synchronization
failure detection in ttethernet networks, Journal of Circuits, Systems and Computers 29 (07) (2020)
2050102.

[92] D. Deng, W. Zhang, S. Lu, Efficient concurrency-bug detection across inputs, Acm Sigplan Notices
48 (10) (2013) 785–802.

[93] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, C. Zhai, Bug characteristics in open source software,
Empirical software engineering 19 (6) (2014) 1665–1705.

[94] S. A. Asadollah, D. Sundmark, S. Eldh, H. Hansson, Concurrency bugs in open source software: a
case study, Journal of Internet Services and Applications 8 (1) (2017) 1–15.

[95] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, T. Stifter, Testing autonomous cars for
feature interaction failures using many-objective search, in: 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2018, pp. 143–154.

[96] F. Wu, P. Anchuri, Z. Li, Structural event detection from log messages, in: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017,
pp. 1175–1184.

[97] N. Madicar, H. Sivaraks, S. Rodpongpun, C. A. Ratanamahatana, Parameter-free subsequences
time series clustering with various-width clusters, in: 2013 5th International Conference on Knowl-
edge and Smart Technology (KST), IEEE, 2013, pp. 150–155.

[98] S. Rodpongpun, V. Niennattrakul, C. A. Ratanamahatana, Selective subsequence time series clus-
tering, Knowledge-Based Systems 35 (2012) 361–368.

77

[99] K. Zhou, S. Yang, Z. Shao, Household monthly electricity consumption pattern mining: A fuzzy
clustering-based model and a case study, Journal of cleaner production 141 (2017) 900–908.

[100] D. Zhang, K. Lee, I. Lee, Hierarchical trajectory clustering for spatio-temporal periodic pattern
mining, Expert Systems with Applications 92 (2018) 1–11.

[101] D. Hallac, S. Vare, S. Boyd, J. Leskovec, Toeplitz inverse covariance-based clustering of multivariate
time series data, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017, pp. 215–223.

[102] B. G. Sürmeli, M. B. Tümer, Multivariate time series clustering and its application in industrial
systems, Cybernetics and Systems 51 (3) (2020) 315–334.

[103] H. Li, Multivariate time series clustering based on common principal component analysis, Neuro-
computing 349 (2019) 239–247.

[104] P. D’Urso, L. De Giovanni, R. Massari, Robust fuzzy clustering of multivariate time trajectories,
International Journal of Approximate Reasoning 99 (2018) 12–38.

[105] P. D’Urso, L. De Giovanni, R. Massari, Trimmed fuzzy clustering of financial time series based on
dynamic time warping, Annals of operations research 299 (1) (2021) 1379–1395.

[106] P. D’Urso, E. A. Maharaj, A. M. Alonso, Fuzzy clustering of time series using extremes, Fuzzy
Sets and Systems 318 (2017) 56–79.

[107] B. Huynh, C. Trinh, H. Huynh, T.-T. Van, B. Vo, V. Snasel, An efficient approach for mining
sequential patterns using multiple threads on very large databases, Engineering Applications of
Artificial Intelligence 74 (2018) 242–251.

[108] D. Maylawati, H. Aulawi, M. Ramdhani, The concept of sequential pattern mining for text, in:
IOP Conference Series: Materials Science and Engineering, Vol. 434, IOP Publishing, 2018, p.
012042.

[109] Y. Cai, H. Yun, J. Wang, L. Qiao, J. Palsberg, Sound and efficient concurrency bug prediction, in:
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2021, pp. 255–267.

[110] G. Li, S. Lu, M. Musuvathi, S. Nath, R. Padhye, Efficient scalable thread-safety-violation detection:
finding thousands of concurrency bugs during testing, in: Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 162–180.

[111] B. Liu, J. Huang, D4: fast concurrency debugging with parallel differential analysis, ACM SIG-
PLAN Notices 53 (4) (2018) 359–373.

[112] S. Behere, M. Törngren, Systems engineering and architecting for intelligent autonomous systems,
in: Automated Driving, Springer, 2017, pp. 313–351.

[113] A. L. Juarez-Dominguez, N. A. Day, J. J. Joyce, Modelling feature interactions in the automotive
domain, in: Proceedings of the 2008 international workshop on Models in software engineering,
2008, pp. 45–50.

78

[114] M. Weiss, B. Esfandiari, Y. Luo, Towards a classification of web service feature interactions, Com-
puter networks 51 (2) (2007) 359–381.

[115] E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, H. Velthuijsen, A feature-
interaction benchmark for in and beyond, IEEE Communications Magazine 31 (3) (1993) 64–69.

[116] D. O. Keck, P. J. Kuehn, The feature and service interaction problem in telecommunications
systems: A survey, IEEE transactions on software engineering 24 (10) (1998) 779–796.

[117] M. Y. Choong, R. K. Y. Chin, K. B. Yeo, K. T. K. Teo, Trajectory pattern mining via clustering
based on similarity function for transportation surveillance, International Journal of Simulation-
Systems, Science & Technology 17 (34) (2016) 19–1.

[118] Y. Harada, Y. Yamagata, O. Mizuno, E.-H. Choi, Log-based anomaly detection of cps using a
statistical method, in: 2017 8th International Workshop on Empirical Software Engineering in
Practice (IWESEP), IEEE, 2017, pp. 1–6.

[119] C. H. Fontes, O. Pereira, Pattern recognition in multivariate time series–a case study applied to
fault detection in a gas turbine, Engineering Applications of Artificial Intelligence 49 (2016) 10–18.

[120] H. Huang, S. Yoo, Failure analysis on multivariate time-series data given uncertain labels, Tech.
rep., Brookhaven National Lab.(BNL), Upton, NY (United States) (2019).

[121] Y.-J. Lee, D.-Y. Kim, M.-S. Hwang, Y.-S. Cheong, A study on data pre-filtering methods for fault
diagnosis, Korean Journal of Computational Design and Engineering 17 (2) (2012) 97–110.

[122] F. Serdio, E. Lughofer, K. Pichler, T. Buchegger, M. Pichler, H. Efendic, Fault detection in multi-
sensor networks based on multivariate time-series models and orthogonal transformations, Infor-
mation Fusion 20 (2014) 272–291.

[123] A. Singhal, D. E. Seborg, Pattern matching in multivariate time series databases using a moving-
window approach, Industrial & engineering chemistry research 41 (16) (2002) 3822–3838.

[124] K. Yang, C. Shahabi, A pca-based similarity measure for multivariate time series, in: Proceedings
of the 2nd ACM international workshop on Multimedia databases, 2004, pp. 65–74.

[125] S. Li, J. Wen, Application of pattern matching method for detecting faults in air handling unit
system, Automation in Construction 43 (2014) 49–58.

[126] W. Krzanowski, Between-groups comparison of principal components, Journal of the American
Statistical Association 74 (367) (1979) 703–707.

[127] T. Y. Sing, S. E. B. Siraj, R. Raguraman, P. N. Marimuthu, K. Nithiyananthan, Cosine similarity
cluster analysis model based effective power systems fault identification, Int. J. Adv. Appl. Sci
4 (1) (2017) 123–129.

[128] L. G. B. Ruiz, M. Pegalajar, R. Arcucci, M. Molina-Solana, A time-series clustering methodology
for knowledge extraction in energy consumption data, Expert Systems with Applications 160 (2020)
113731.

[129] S. Aghabozorgi, A. S. Shirkhorshidi, T. Y. Wah, Time-series clustering–a decade review, Informa-
tion Systems 53 (2015) 16–38.

79

[130] V. Hautamaki, P. Nykanen, P. Franti, Time-series clustering by approximate prototypes, in: 2008
19th International conference on pattern recognition, IEEE, 2008, pp. 1–4.

[131] F. Gullo, G. Ponti, A. Tagarelli, G. Tradigo, P. Veltri, A time series approach for clustering mass
spectrometry data, Journal of Computational Science 3 (5) (2012) 344–355.

[132] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E. Keogh, Experimental comparison
of representation methods and distance measures for time series data, Data Mining and Knowledge
Discovery 26 (2) (2013) 275–309.

[133] C. S. Möller-Levet, F. Klawonn, K.-H. Cho, O. Wolkenhauer, Fuzzy clustering of short time-series
and unevenly distributed sampling points, in: International symposium on intelligent data analysis,
Springer, 2003, pp. 330–340.

[134] G. Jiang, W. Wang, W. Zhang, A novel distance measure for time series: Maximum shifting
correlation distance, Pattern Recognition Letters 117 (2019) 58–65.

[135] Y. Xiong, D.-Y. Yeung, Mixtures of arma models for model-based time series clustering, in: 2002
IEEE International Conference on Data Mining, 2002. Proceedings., IEEE, 2002, pp. 717–720.

[136] S. Salvador, P. Chan, Toward accurate dynamic time warping in linear time and space, Intelligent
Data Analysis 11 (5) (2007) 561–580.

[137] P. D’Urso, L. De Giovanni, Temporal self-organizing maps for telecommunications market segmen-
tation, Neurocomputing 71 (13-15) (2008) 2880–2892.

[138] P. D’Urso, L. De Giovanni, R. Massari, Garch-based robust clustering of time series, Fuzzy Sets
and Systems 305 (2016) 1–28.

[139] B. Vieira, R. Severino, A. Koubâa, E. Tovar, Towards a Realistic Simulation Framework for Ve-
hicular Platooning Applications, arXiv preprint arXiv:1904.02994 (2019).

[140] M. Kamali, S. Linker, M. Fisher, Modular Verification of Vehicle Platooning with respect to De-
cisions, Space and Time, in: International Workshop on Formal Techniques for Safety-Critical
Systems, Springer, 2018, pp. 18–36.

[141] Aaron Blasdel, Robot Operating System (ROS), [Online; accessed 2-July-2019].
URL https://www.ros.org/

[142] Math Works, Simulink, [Online; accessed 2-July-2019].
URL https://www.mathworks.com/products/simulink.html

[143] M. Elgharbawy, A Big Testing Framework for Automated Truck Driving, Urban transportation
and construction 4 (1) (2019) e27–e27.

[144] S. Achrifi, Coverage Verification Framework for ADAS Models (March 2017).

[145] P. Mallozzi, M. Sciancalepore, P. Pelliccione, Formal Verification of the On-the-fly Vehicle Platoon-
ing Protocol, in: International Workshop on Software Engineering for Resilient Systems, Springer,
2016, pp. 62–75.

[146] K. Meinke, Learning-based Testing of Cyber-Physical Systems-of-Systems: A Platooning Study,
in: European Workshop on Performance Engineering, Springer, 2017, pp. 135–151.

80

https://www.ros.org/
https://www.ros.org/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

[147] Math Works, VnV Toolbox, [Online; accessed 2-July-2019].
URL https://www.mathworks.com/products/transitioned/simverification.html

[148] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on software fault localization, IEEE
Transactions on Software Engineering 42 (8) (2016) 707–740.

[149] Y.-J. Shin, S. Hyun, Y.-M. Baek, D.-H. Bae, Spectrum-based fault localization on a collaboration
graph of a system-of-systems, in: 2019 14th Annual Conference System of Systems Engineering
(SoSE), IEEE, 2019, pp. 358–363.

[150] A. Arrieta, S. Segura, U. Markiegi, G. Sagardui, L. Etxeberria, Spectrum-based fault localization
in software product lines, Information and Software Technology 100 (2018) 18–31.

[151] N. C. Jones, P. A. Pevzner, P. Pevzner, An introduction to bioinformatics algorithms, MIT press,
2004.

[152] L. A. Zadeh, Fuzzy logic, Computer 21 (4) (1988) 83–93.

[153] X. Wang, Y. Wang, L. Wang, Improving fuzzy c-means clustering based on feature-weight learning,
Pattern recognition letters 25 (10) (2004) 1123–1132.

[154] A. M. Anter, A. E. Hassenian, D. Oliva, An improved fast fuzzy c-means using crow search opti-
mization algorithm for crop identification in agricultural, Expert Systems with Applications 118
(2019) 340–354.

[155] Z. He, S. Zhang, F. Gu, J. Wu, Mining conditional discriminative sequential patterns, Information
Sciences 478 (2019) 524–539.

[156] Z. He, S. Zhang, J. Wu, Significance-based discriminative sequential pattern mining, Expert Sys-
tems with Applications 122 (2019) 54–64.

[157] B. Tripathy, et al., Fuzzy clustering of sequential data, International Journal of Intelligent Systems
and Applications 11 (1) (2019) 43.

[158] J. A. Jones, M. J. Harrold, J. T. Stasko, Visualization for fault localization, in: in Proceedings of
ICSE 2001 Workshop on Software Visualization, Citeseer, 2001.

[159] R. Abreu, P. Zoeteweij, A. J. Van Gemund, An evaluation of similarity coefficients for software
fault localization, in: 2006 12th Pacific Rim International Symposium on Dependable Computing
(PRDC’06), IEEE, 2006, pp. 39–46.

[160] L. Naish, H. J. Lee, K. Ramamohanarao, A model for spectra-based software diagnosis, ACM
Transactions on software engineering and methodology (TOSEM) 20 (3) (2011) 1–32.

[161] W. E. Wong, V. Debroy, R. Gao, Y. Li, The dstar method for effective software fault localization,
IEEE Transactions on Reliability 63 (1) (2013) 290–308.

[162] S. Honig, T. Oron-Gilad, Understanding and resolving failures in human-robot interaction: Liter-
ature review and model development, Frontiers in psychology 9 (2018) 861.

[163] P. Schnoebelen, The Complexity of Temporal Logic Model Checking., Advances in modal logic
4 (393-436) (2002) 35.

81

https://www.mathworks.com/products/transitioned/ simverification.html
https://www.mathworks.com/products/transitioned/ simverification.html

[164] A. Wald, Sequential Tests of Statistical Hypotheses, The annals of mathematical statistics 16 (2)
(1945) 117–186.

[165] M. Y. Arafat, S. Hoque, S. Xu, D. M. Farid, Machine learning for mining imbalanced data, IAENG
International Journal of Computer Science 46 (2) (2019) 332–348.

[166] G. Figueroa, Y.-S. Chen, N. Avila, C.-C. Chu, Improved practices in machine learning algorithms
for ntl detection with imbalanced data, in: 2017 IEEE Power & Energy Society General Meeting,
IEEE, 2017, pp. 1–5.

[167] R. Olfati-Saber, R. M. Murray, Distributed cooperative control of multiple vehicle formations using
structural potential functions, IFAC Proceedings Volumes 35 (1) (2002) 495–500, 15th IFAC World
Congress. doi:https://doi.org/10.3182/20020721-6-ES-1901.00244.
URL https://www.sciencedirect.com/science/article/pii/S1474667015386651

[168] C. Cobos, O. Rodriguez, J. Rivera, J. Betancourt, M. Mendoza, E. León, E. Herrera-Viedma, A
hybrid system of pedagogical pattern recommendations based on singular value decomposition and
variable data attributes, Information Processing & Management 49 (3) (2013) 607–625.

[169] J. K. Tarus, Z. Niu, D. Kalui, A hybrid recommender system for e-learning based on context
awareness and sequential pattern mining, Soft Computing 22 (8) (2018) 2449–2461.

[170] A. Lutov, M. Khayati, P. Cudré-Mauroux, Accuracy evaluation of overlapping and multi-resolution
clustering algorithms on large datasets, in: 2019 IEEE International Conference on Big Data and
Smart Computing (BigComp), IEEE, 2019, pp. 1–8.

[171] E. Wong, T. Wei, Y. Qi, L. Zhao, A crosstab-based statistical method for effective fault localization,
in: 2008 1st international conference on software testing, verification, and validation, IEEE, 2008,
pp. 42–51.

[172] R. Abreu, P. Zoeteweij, A. J. Van Gemund, Spectrum-based multiple fault localization, in: 2009
IEEE/ACM International Conference on Automated Software Engineering, IEEE, 2009, pp. 88–99.

[173] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang, B. Keller, Evaluating
and improving fault localization, in: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), IEEE, 2017, pp. 609–620.

[174] F. Steimann, M. Frenkel, R. Abreu, Threats to the validity and value of empirical assessments of
the accuracy of coverage-based fault locators, in: Proceedings of the 2013 International Symposium
on Software Testing and Analysis, 2013, pp. 314–324.

[175] M. J. Zaki, Spade: An efficient algorithm for mining frequent sequences, Machine learning 42 (1)
(2001) 31–60.

[176] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in
software engineering, Springer Science & Business Media, 2012.

[177] O. I. de Normalización, ISO 26262: Road Vehicles : Functional Safety, ISO, 2011.
URL https://books.google.co.kr/books?id=3gcAjwEACAAJ

[178] F. Hutter, H. Hoos, K. Leyton-Brown, An efficient approach for assessing hyperparameter impor-
tance, in: International conference on machine learning, PMLR, 2014, pp. 754–762.

82

https://www.sciencedirect.com/science/article/pii/S1474667015386651
https://www.sciencedirect.com/science/article/pii/S1474667015386651
https://doi.org/https://doi.org/10.3182/20020721-6-ES-1901.00244
https://www.sciencedirect.com/science/article/pii/S1474667015386651
https://books.google.co.kr/books?id=3gcAjwEACAAJ
https://books.google.co.kr/books?id=3gcAjwEACAAJ

[179] M. Feurer, F. Hutter, Hyperparameter optimization, in: Automated machine learning, Springer,
Cham, 2019, pp. 3–33.

[180] J. Vanschoren, Meta-learning: A survey, arXiv preprint arXiv:1810.03548 (2018).

[181] N. Xie, G. Ras, M. van Gerven, D. Doran, Explainable deep learning: A field guide for the
uninitiated, arXiv preprint arXiv:2004.14545 (2020).

[182] N. Reimers, I. Gurevych, Reporting score distributions makes a difference: Performance study of
lstm-networks for sequence tagging, arXiv preprint arXiv:1707.09861 (2017).

83

Acknowledgments in Korean

카이스트에서 어느덧 5번째 겨울을 맞이하고 있습니다. 박사과정이라는 큰 산에 오르게되어 감회가 새롭
고, 앞으로 나아가야할 넓은 바다와 다른 산들을 보게되니 가슴이 떨립니다. 먼저, 많이 미흡했던 저희를
석사과정때부터 한 명의 연구원으로써 존중해주시고, 연구의 큰 방향에 대한 참된 조언을 해주신 배두환
지도교수님께 깊은 감사를 드립니다. 배두환 교수님께서 해주셨던 많은 격려와 조언이 없었더라면, 저는 이
자리에 없었을 거라고 생각합니다. 함께 연구를 진행하며 연구의 세부 사항들에 대해 조언해주시고 특히나
논문 작성과정에서 많은 도움을 주셨던 지은경 교수님께도 감사드립니다. 박사 과정으로서의 문제를 정의
하는자질을기르게도와주신고인영교수님, 기법/실험적인측면에서실질적인조언을주셨던유신교수님,
기업적 측면에서 연구의 가치에 대해 조언해주신 민상윤 대표님께도 다시 한번 감사의 인사 드립니다.

학위과정동안 연구실에서 동고동락해온 SE랩 선후배분들께도 감사드립니다. 마치 부모의 마음으로
초창기에 문장단위까지 논문을 봐주셨던 지영누나, 영민이형, 아무것도 모를때 참된 조언을 해주셨던 동환
이형께 감사전합니다. 함께 있을때 즐겁고 믿을 수 있는 동료이자 선배였던 용준이, 수민이형, Zele 감사
합니다. 모두가 성공가도를 달려 국내/외에서 좋은 소식 전해주시기를 기원합니다. 석사를 졸업하고 이미
사회에서 멋진 일을 하고있거나, 앞으로 하게 될 유림누나, 승철이, 성진이, May, Lingjun, Anthony, 미현,
한수 모두에게 감사의 인사 전하고 싶습니다. 그리고 박사과정을 하고 있는 든든한 은호에게도 진심어린
응원과 감사를 전합니다. 워낙 꼼꼼하고 잘 하는 친구라 좋은 결과로 졸업할 것을 믿어 의심치 않습니다.
다른 선후배님들도 항상 응원하고 앞으로도 가시는 길에 행운과 좋은 일이 가득하기를 기원합니다.

고된 대학원 생활에서 많은 공감을 해주고 웃음을 주었던 친구들에게도 감사 인사 전합니다. 고등학교
친구일융이, 태현이, 종언이가카이스트에함께있었기에더행복했습니다. 어느덧 18년째알고지낸고향친
구들 상오, 상우, 승민이, 용원이, 지예가 있어서 평택에 갈때마다 즐겁고 힘이되었습니다. 답십리에서 같이
지내며 아무것도 몰랐던 저를 넓은 마음으로 받아주셨던 원혁이형, 승준이형, 명성이형, 상헌이형에게도
감사드립니다. 서울에서 같이 놀아주며 힘을 주었던 한양대 APEX 동기들 민수, 수종이, 한솔이, 혁진이,
효찬이, 시현이, 준석이, 필무 감사하고 항상 응원합니다. 카이스트에서 대학원 생활을 하며 더욱 친해지고
새로 알게되었던 달구지 친구들 원일이, 재영이, 민경누나에게도 감사의 인사 전합니다. 앞으로도 오랜 시간
동안 함께하고 서로 추억을 나누며 웃을 수 있기를 바랍니다. 그리고, 대학원이라는 인생에서 손꼽힐 고된
시간에서 가장 가까이 있어주었던 나의 연인 영경이에게도 감사의 마음 전합니다. 덕분에 행복할때 웃고,
슬플때 울면서 박사학위과정을 아름다웠던 추억으로 기억할 수 있게 됐습니다. 이제 학교를 떠나 사회에
나가게 된 후에도 더 즐겁고 솔직하게, 행복한 시간 오래도록 함께할 수 있을 것이라 믿어 의심치 않습니다.

마지막으로,사랑하는가족에게감사를전합니다. 언제나저의든든한버팀목이자그늘이되어주셨기에
제가 대학원에 진학하고 학위 공부에 집중할 수 있었습니다. 일체유심조라는 명언을 수십년간 직접 행동
으로 보여주시며 지금까지 사회에서 큰 역할을 하고 계시는 아버지, 항상 저희를 걱정하시고 챙겨주시고
재테크에도 큰 재능을 보여주시며 지금도 선생님으로 저희를 뒷바라지 해주시는 어머니 정말 감사합니다.
지금까지 부모님께서 저에게 주셨던 은혜 잊지 않고, 평생 보답하며 살겠습니다. 지금은 공부하느라 고생이
많지만 앞으로는 세계적인 셰프로써 이름을 떨칠 동생 상호에게도 감사와 응원을 전합니다. 매사 진지한
저와는 다른 집안의 분위기 메이커인 동생이 있었기에 참 웃을 일과 추억이 많았습니다. 항상 응원해주시
고 좋은 조언 많이 해주셨던 큰이모, 큰 이모부, 작은이모, 작은이모부, 사촌이자 대표님이 된 기홍이형과
충북대 로스쿨 교수님이신 형수님께도 감사의 인사드립니다. 그리고 오랜기간 함께 살았지만 지금은 더
높은 곳으로 떠나계신 할아버지, 할머니께도 감사의 인사 올립니다. 제가 갓난아기일때부터 돌봐주시고, 십
수년간 한 지붕아래 함께한 가족이었던 할아버지, 할머니께 그래도 좋은 소식 전해드린것 같아 다행이라고
생각하며 항상 사랑한다고 기도 드립니다. 제가 우리 가족의 일원이라 너무 행복하고 감사하게 생각하며,
일평생 부모님을 위하고 동생 상호와도 서로 존중하며 지내겠습니다. 항상 사랑하고 감사드립니다.

84

Curriculum Vitae in Korean

이 름: 현 상 원

생 년 월 일: 1994년 12월 10일

학 력

2010. 3. – 2013. 2. 공주 한일고등학교

2013. 3. – 2018. 2. 한양대학교 컴퓨터공학부 소프트웨어전공 (학사)

2018. 3. – 2023. 2. 한국과학기술원 전산학부 (석박통합과정)

연 구 업 적

1. Sangwon Hyun, Jiyoung Song, Eunkyoung Jee, and Doo-Hwan Bae, “ Timed Pattern-based Anal-
ysis of Collaboration Failures in System-of-Systems", Available at SSRN 4197677.

2. Jiyoung Song, Jeehoon Kang, Sangwon Hyun, Eunkyoung Jee, and Doo-Hwan Bae, “Continuous
verification of system of systems with collaborative MAPE-K pattern and probability model slicing",
Information and Software Technology 147 (2022) 106904.

3. Esther Cho, Yong-Jun Shin, Sangwon Hyun, Hansu Kim, and Doo-Hwan Bae, “Automatic Gener-
ation of Metamorphic Relations for a Cyber-Physical System-of-Systems Using Genetic Algorithm”,
Asia-Pacific Software Engineering Conference (APSEC), 2022, 29th, Online.

4. Sangwon Hyun, Lingjun Liu, Hansu Kim, Esther Cho, and Doo-Hwan Bae, “An Empirical Study
of Reliability Analysis for Platooning System-of-Systems”, International Conference on Software
Quality, Reliability and Security Companion (QRS-C), IEEE, 2021, pp. 506–515.

5. Yong-Jun Shin, Lingjun Liu, Sangwon Hyun, Doo-Hwan Bae, “Platooning LEGOs: An Open
Physical Exemplar for Engineering Self-Adaptive Cyber-Physical Systems-of-Systems”, 2021 Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
Online.

6. SungJin Lee, Young-Min Baek, Sangwon Hyun, and Doo-Hwan Bae, “Generation of Adaptation
Strategies for Dynamic Reconfiguration of a System of Systems”, Proceedings of 2021 16th Annual
Conference System of Systems Engineering (SoSE) (SoSE2021), Online, Jun 2020.

7. Seungchyul Shin, Sangwon Hyun, Yong-jun Shin, Jiyoung Song, Doo-Hwan Bae, “Uncertainty
based Fault Type Identification for Fault Knowledge Base Generation in System of Systems”, Pro-
ceedings of 2021 16th Annual Conference System of Systems Engineering (SoSE) (SoSE2021), Online,
Jun 2020.

8. Sangwon Hyun, Jiyoung Song, Seungchyul Shin, Young-Min Baek, and Doo-Hwan Bae, “Pattern-
based Analysis of Interaction Failures in Systems-of-Systems: a Case Study on Platooning”, Asia-
Pacific Software Engineering Conference (APSEC), 2020, 27th, Singapore, Singapore.

85

9. Sumin Park, Yong-jun Shin, Sangwon Hyun, Doo-Hwan Bae, “SIMVA-SoS: Simulation-based Ver-
ification and Analysis for System-of-Systems”, Proceedings of 2020 15th Annual Conference System
of Systems Engineering (SoSE) (SoSE2020), Budapest, Hungary, Jun 2020.

10. Sangwon Hyun, Jiyoung Song, Seungchyul Shin, and Doo-Hwan Bae, “Statistical Verification
Framework for Platooning System of Systems with Uncertainty”, Asia-Pacific Software Engineering
Conference (APSEC), 2019 26th, Putrajaya, Malaysia.

11. Jiyoung Song, Jacob O. Torring, Sangwon Hyun, Eunkyoung Jee, and Doo-Hwan Bae, “Slicing
Executable System-of-Systems Models for Efficient Statistical Verification”, Proceedings of the 3rd
ACM/IEEE International Workshop on Software Engineering for Systems-of-Systems (SESoS 2019).

12. Yong-Jun Shin, Sangwon Hyun, Young-Min Baek, and Doo-Hwan Bae, “Spectrum-Based fault
localization on a collaboration graph of a System-of-Systems”, Proceedings of 2019 14th Annual
Conference System of Systems Engineering (SoSE) (SoSE2019), Anchorage, USA, May 2019.

13. 김한수 (Hansu Kim), 현상원 (Sangwon Hyun), 배두환 (Doo-Hwan Bae), “다변수 시계열 데이터
군집화 알고리즘의 사이버 물리 시스템 오브 시스템즈 실패 분석을 위한 연구 조사 (A Survey on
Multivariate Time-Series Clustering Techniques for Analyzing Cyber-Physical System-of-Systems
Failures)” 한국컴퓨터종합학술대회 논문집 [KCC 2022].

14. May Myat Thwe, 현상원 (Sangwon Hyun), 배두환 (Doo-Hwan Bae), “엣지 컴퓨팅 기반 지능형
교통 시스템 오브 시스템즈의 품질 속성 평가를 위한 사례 분석 (Towards the Quality Assessment
of Intelligent Transportation System of Systems using Edge Computing)” 한국컴퓨터종합학술대회
논문집 [KCC 2021].

15. 현상원 (Sangwon Hyun), 신용준 (Yong-Jun Shin), 배두환 (Doo-Hwan Bae), “시스템 오브 시스템
즈의 오류 위치 추정을 위한 통계적 검증 결과 활용 기법 분석(Analysis of Utilization Methods of the
Statistical Model Checking Results for Localizing Faults on System of Systems)” 정보과학회 논문지
[Journal of KIISE 2020]: 380-386.

16. 신승철 (Seungchyul), 현상원 (Sangwon Hyun), 송지영 (Jiyoung Song), 배두환 (Doo-Hwan Bae),
“시스템 오브 시스템즈의 특성을 고려한 발현 위치 기반 불확실성 요소 분류 (Manifestation Location-
based Classification of Uncertainty Factors Considering Characteristics of System-of-Systems)” 정
보과학회 컴퓨팅의 실제 [KIISE Transactions on Computing Practies, Vol.26, No. 10]: 451-457.

17. 신승철 (Seungchyul), 현상원 (Sangwon Hyun), 송지영 (Jiyoung Song), 배두환 (Doo-Hwan Bae),
“시스템 오브 시스템즈에서의 불확실성 요소 분석: 군집운행 시나리오에서의 사례 연구 (Analysis of
Uncertainty Factors in System of Systems: Case Study in Platooning Scenario)” 한국정보과학회
학술발표논문집 [KSC 2019]: 278-280.

18. 현상원 (Sangwon Hyun), 신용준 (Yong-Jun Shin), 배두환 (Doo-Hwan Bae), “시스템 오브 시스템
즈의 오류 위치 추정을 위한 통계적 검증 결과 활용 기법 분석 (Analysis of Utilization Methods of
Statistical Model Checking Results for Localizing Faults on System of Systems)”. 한국컴퓨터종합학
술대회 논문집 [KCC 2019], 2019. 06.

19. 현상원 (Sangwon Hyun), 송지영 (Jiyoung Song), 지은경 (Eunkyoung Jee), 배두환 (Doo-Hwan
Bae), “시스템 오브 시스템즈의 효율적 검증을 위한 목표 모델 슬라이싱 (Goal Model Slicing for Ef-
ficient Verification of System of Systems)”. 한국정보과학회 학술발표논문집 [KSC 2018], 2018.12,
432-434.

86

