
Slicing Executable System-of-Systems Models for
Efficient Statistical Verification

Jiyoung Song, Jacob O. Tørring, Sangwon Hyun, Eunkyoung Jee, Doo-Hwan Bae
School of Computing

Korea Advanced Institute of Science and Technology (KAIST)

Daejeon, Republic of Korea

{jysong, jacobot, swhyun, ekjee, bae}@se.kaist.ac.kr

Abstract—A System of Systems (SoS), composed of indepen-
dent constituent systems, can create synergy among its systems
to achieve a common goal. Many studies have used statistical
model checking techniques to verify how well an SoS can achieve
its goals. SoS models are usually complex and probabilistic,
which makes statistical verification computationally expensive. To
reduce this cost, dynamic slicing techniques can be applied to SoS
models since both dynamic slicing and statistical verification focus
on the models’ execution samples. However, existing dynamic
slicing techniques cannot guarantee executable accurate slices
of SoS models when the models contain uncertainty. Therefore,
we propose a hybrid slicing approach that combines dynamic
backward slicing and modified observation-based slicing to pro-
duce accurate executable slices. Experimentation on the proposed
technique found that the verification time was significantly
reduced (47-56%), depending on the property, while preserving
the verification results.

Index Terms—System-of-Systems, model slicing, statistical
model checking, model verification

I. INTRODUCTION

A System of Systems (SoS) consists of autonomous and

independent Constituent Systems (CSs) that can achieve com-

mon goals. It is vital to verify that defects have not occurred

during the process of integrating independent CSs and that the

orchestrated CSs are sufficient to achieve the desired goal(s).

SoS managers can perform model-based verification by ab-

stracting large systems into manageable models and verifying

the models with respect to the desired properties, such as goal

achievement and safety. In previous works [1]–[4], the authors

modeled and verified an SoS using Statistical Model Checking

(SMC) techniques. Although SMC techniques are much more

scalable than classical exhaustive model checking techniques,

the cost of SMC is still significant in many SoSs due to the

size of the SoS model and the cost of simulations.

To reduce the cost of SoS model verification, slicing

techniques can be considered. Song et al [3] proposed SoS

GaP slicer—a slicing framework for SoS goal models and

simulation models that is based on SoS changes. The changed

parts and change-related parts of the SoS model are sliced by

backward slicing, and the slices are given to the verification

engine. SoS GaP slicer focuses on SoS change analysis,

and it only uses verification properties that are related to

change as the slicing criteria. However, SoS managers need

to analyze SoS model based on other properties related to

existence, absence, universality, transient states, steady states,

and minimum duration.

Applying dynamic slicing on the probabilistic SoS simula-

tion model can increase the efficiency of statistical verification

by reducing size of the model. SMC and dynamic slicing

are both performed on actual model executions. SMC verifies

the model not by checking every execution path but rather

by sampling several executions of the model. Slicing the

probabilistic SoS simulation model based on several execution

samples reduces the scope of the probabilistic SoS simulation

model to be sliced. By contrast, if we perform static slicing on

an entire SoS model, the cost of analysis will be substantially

larger. However, existing dynamic slicing approaches do not

generate executable and accurate slices of probabilistic SoS

simulation models. JavaSlicer [5]1, a dynamic slicing tool,

cannot generate executable slices because the purpose of the

tool is to profile Java programs for parallelism. Another slicing

approach, observation-based slicing (ORBS) [6], compares the

intended simulation trajectories to the modified simulation

trajectories of the subject programs. When applying ORBS

directly to the probabilistic SoS simulation models that have

uncertainty, we cannot compare the simulation trajectories be-

cause they will vary between executions due to the uncertainty.

In this paper, we propose a general analysis approach that

slices probabilistic SoS simulation models based on user-

interested variables, statements, and verification properties. We

utilize dynamic backward slicing for generating accurate slices

and the slices become executable by modified observation-

based slicing. This hybrid approach complements the limi-

tations of JavaSlicer and ORBS approaches. We have imple-

mented the proposed hybrid approach as a model slicer module

of Simulation-based Verification and Analysis (SIMVA) for

SoS, an integrated tool for the statistical verification of SoS.

SIMVA-SoS has been released with several scenarios such as

a Mass Casualty Incident (MCI) response SoS in GitHub2.

The input of the proposed approach, the probabilistic SoS

simulation model is a Java program, whereas the output is

an executable probabilistic SoS simulation model slice that

enables the efficient use of SMC. In our experiment, we

show the accuracy of the proposed approach by comparing

1https://github.com/hammacher/javaslicer
2https://github.com/SESoS/SIMVA-SoS

18

2019 IEEE/ACM 7th International Workshop on Software Engineering for Systems-of-Systems (SESoS) and 13th Workshop
on Distributed Software Development, Software Ecosystems and Systems-of-Systems (WDES)

978-1-7281-3439-0/19/$31.00 ©2019 IEEE
DOI 10.1109/SESoS/WDES.2019.00011

verification results of SoS model slices that are generated by

our tool to those of the original SoS model. Our experimental

results show that the verification time has been reduced by 47-

56%, depending on the property, when the SoS model slices

are given to the SMC engine, while the verification results are

preserved.

The remainder of this paper is organized as follows: sec-

tion II explains the background of both the statistical model

checking and the slicing techniques; section III illustrates an

MCI-response SoS scenario and motivating slicing examples;

section IV presents the proposed approach and its implementa-

tion; in section V, we apply our approach to a probabilistic SoS

simulation model and conduct experiments with three research

questions; section VI describes related works to our approach;

and we discuss our conclusions in section VII.

II. BACKGROUND

In this section, we firstly describe the mechanism of SMC

and the property specification that are used in SIMVA-SoS,

and we follow with a brief introduction to slicing techniques.

A. Statistical Model Checking in SIMVA-SoS

The SMC technique deduces whether the system satisfies

the property by simulating and monitoring the system via

hypothesis testing, that can give statistical evidence for the

satisfaction or the violation of the specification [7]. SMC has

been used to verify large and complex systems because it is

less time and memory intensive than numerical model check-

ing [8]. The SIMVA-SoS tool’s SMC engine consists of three

modules: simulation, verification, and analysis. In addition,

there are three inputs for the engine: the executable model S,

the verification property φ, and the precision parameters.

The simulation module executes the executable model S,

which can represent the stochastic behavior of a target system.

The discrete-time Markov chain (DTMC) and the continuous-

time Markov chain (CTMC) models can be used to construct

the stochastic model. Both models can represent probabilistic

transitions between finite states, but the main difference is that

the CTMC considers continuous time [9]. Via this executable

model, the simulation module sends a simulation trace σ to the

verification module. Because simulation traces of a stochastic

model are not always the same, a statistical analysis with

repetitive simulations is necessary.

The verification module checks whether the simulation trace

σ satisfies the verification property φ. There are many kinds

of temporal logic for formulating verification properties [10].

The SIMVA-SoS verification module can handle probabilistic

computational logic (PCTL) for DTMC model verification

and continuous stochastic logic (CSL) for CTMC model

verification. An example of a PCTL property is as follows:

“P =?[trueU <= 10000(num of patient SEA) >= 45]”.

This example is used in the MCI-response system scenario in

SIMVA-SoS, where it checks whether the system finds more

than 45 patients at sea within 10,000 steps for each trace.

Finally, this module sends the verification result of the trace

(σ � φ) as either true or false to the analysis module.

The analysis module counts the number of total simulation

traces as well as the number of simulation traces that satisfy

the property. Using this information, the SIMVA-SoS tool

uses a sequential probability ratio test (SPRT) [11] that

statistically calculates the number of sufficient traces for a

reliable verification result. Thus, if the number of traces

is insufficient, this module calls the simulation module to

request more simulations until it collects a sufficient number of

samples. Otherwise, this module returns the probabilistic result

in which the input model S satisfies the verification property

φ. Two precision parameters (α , β) are used to check errors of

accepting the probabilistic result of the SPRT algorithm [12].

Therefore, an error probability of the probabilistic result is

bounded by a false positive probability α and a false negative

probability β.

B. Slicing Concepts

The concept of the program slicing technique was first

introduced by Weiser [13] to simplify programs based on some

slicing criteria, which could include a specific variable v and

a program point l (e.g., a line number in the program) that

the user wants to investigate. The technique then generates a

program slice that only contains statements that are relevant

to this variable, relative to the program point.

Program slicing techniques can be categorized into

three dimensions [14], Forward/Backward slice(or Chopped
slice [15]), Closure/Executable slice and Static/Dynamic slice

(or hybrid approaches [14]). A forward slice contains all

statements that are affected by the slicing criteria, while a

backward slice contains the statements that affect the slicing

criteria. A closure slice is a closure of all the program

statements that affect (in the case of backward slicing) or are

affected by (in the case of forward slicing) the slicing criteria.

These slices often produce subsets of the program that are

non-executable; hence, closure slices cannot be used directly

for generating executable programs. An executable slice is a

subset of closure slices, which also require the slice to be

executable. A static slice contains all possible execution paths,

relative to the slicing criteria. A dynamic slice is based on a

specific execution, which is to be analyzed; as such, we can

construct the slice by tracing the execution path and recording

any statements that are related to the slicing criteria, resulting

in the dynamic slice producing a significantly smaller slice

than that of a static slice.

III. AN ILLUSTRATIVE EXAMPLE

A. MCI-response SoS Scenario

In this paper, we use an MCI-response SoS model that has

clear characteristics of an SoS, such as autonomy, diversity

and connectivity [16]. The model assumes a scenario where a

tsunami has occurred, thereby causing human casualties both

on land and at sea. The model is composed of an MCI-

response SoS manager and a Patient Transferring System

(PTS). The SoS manager’s goal is to rescue as many patients

as possible from the various regions using the available PTSs.

The SoS manager is trying to reduce the number of deaths by

19

(a) The original example (b) The example sliced by JavaSlicer

(c) The example sliced by ORBS (d) The correct example slice

Fig. 1: Slicing the example SoS model

attending to the emergency patients first. However, each PTS

prioritizes the closest patients, regardless of the urgency, due

to the cost of moving the PTS. Therefore, the SoS manager

assigns a PTS to the accident site. A patient on land is

rescued by an ambulance, and a patient at sea is rescued by

a helicopter. The PTS arrives at the accident site, sends a

message to the SoS manager, and performs triage. First aid is

provided to an injured patient in the PTS. The PTS then sends

a request to a hospital and confirms the number of patients

that can be accommodated in the hospital. At the same time,

the PTS drives to the hospital.

B. Slicing the example

To introduce how these slicing techniques work, we have

provided a small function from an example model in Fig. 1.

The function in Fig. 1a has one Ambulance object as input.

This object contains the current status of the vehicle, the

number of patients that it carries, and the max distance that

it is willing to travel to save a patient. The status indicates

if the ambulance is searching for patients or if it is currently

carrying patients. For this example we are only interested in

the ambulance’s status, and can thus specify the slicing criteria

as the ambulance’s status at the return statement on line 10.

The random variable distance to patient is an artificially

random variable in this example to make a compact and

complete example without describing a larger complex SoS.

This paper’s algorithm is partly based on the JavaSlicer [5],

which produces closure slices through dynamic backward

slicing. This implies that the slice only contains the statements

that affect the computation of amb.status before line 10

for a specific input. Therefore at least one of the simu-

lations has to provide an Ambulance object that satisfies

distance to patient < amb.max distance for the slices

to include the correct trajectory as in Fig. 1b. These slices

are computed using a dependence graph to include all of the

statements that alter amb.status, including transitive control

dependencies and data dependencies. The main disadvantage

of JavaSlicer’s approach is its inability to detect lines that are

necessary to make a syntactically correct executable program.

In Fig. 1b all relevant statements that affect the criteria are

included, but lines that exclusively contain bracket delimiters

are not included.

In the proposed technique, we also use a modified ver-

sion of observation-based slicing (ORBS) — a language-

agnostic slicing technique by Binkley et al. [6] to create

executable slices. The ORBS technique is similar to dynamic

slicing, but it uses an iterative reduction approach instead of

creating dependence graphs. The technique utilizes iterative

applications of deletion operators and observes whether the

program slice behaves identically to the original program with

respect to the slicing criteria. The observation is based on the

slice being compilable and the state trajectory of the sliced

program remaining identical to the original program. The state

trajectory can be informally described as the sequence of states

that are produced from the slicing criteria. If any of these

conditions fail, the deletion is reverted, and the algorithm

moves to a different program point. Given these properties, the

resulting slice is always semantically equivalent to the program

with respect to the slicing criteria.

However, the example program has the random value

distance to patient, which causes the trajectory to vary

between executions. The example program needs at least 12

20

Fig. 2: The overall approach to probabilistic SoS simulation

model slicing

times of the deleting-observing-reverting process to check

every program point. If the trajectories did not execute the

if block, the ORBS technique would delete the if block

and produce the incorrect slice shown in Fig. 1c. This slice

produced by ORBS is executable but does not contain all of

the same statements as the correct program slice in Fig. 1d.

In essence, the dynamic slicing approach constructs a slice

with an increasing amount of information for each iteration,

while the ORBS technique iteratively reduces the slice, and

thus might lose necessary information in the process when

the behavior is probabilistic.

IV. SLICING PROBABILISTIC SOS SIMULATION MODELS

FOR SMC

This section introduces a probabilistic SoS simulation model

slicing approach and its implementation in the statistical

verification of SoSs. The proposed slicing approach utilizes

dynamic backward slicing and the ORBS algorithm, which

is described in Section III. The proposed approach is imple-

mented as a slicing module in SIMVA-SoS, but could also be

applied for general source code.

A. Procedure of Slicing Probabilistic SoS Simulation Model

The goal of the proposed approach is to generate an SoS

simulation model slice that is based on the SoS verification

properties or analysis criteria. Fig. 2 shows the overall ap-

proach of the SoS simulation model slicer, which includes two

parts: 1) dynamic backward slicing (the upper parts, which

are indicated by dotted lines) and 2) modified observation-

based slicing (the lower parts, which are indicated by solid

lines). After performing modified observation-based slicing

Fig. 3: An intermediate output of the proposed approach

(mORBS) repeatedly, we can obtain executable probabilistic

SoS simulation model slices as an output. Dynamic backward

slicing provides an intermediate slice, which is used as the

slicing criteria for the mORBS. The mORBS deletes the

instructions (inst.) according to the intermediate slice infor-

mation, not to the trajectory information.

Dynamic backward slicing is divided into four steps: in-

serting probes3 into the probabilistic SoS simulation model,

extracting the simulated traces, slicing the traces based on

the specified properties, and generating a closure slice of the

probabilistic SoS simulation model.

The proposed approach inserts probes into the probabilis-

tic SoS simulation model to analyze the control and data

dependency graphs as well as to see which instructions are

executed when the model is running. Probe insertion in the

probabilistic SoS simulation model is mainly performed at

the Java bytecode level. When the probabilistic SoS simu-

lation model with the probes is executed, JavaSlicer outputs

a simulation trace in the form of a log. Backward slicing

is performed on the extracted simulation traces. The slicing

criteria of the simulation traces can be either variables or

statements for model analysis, and verification properties for

statistical verification. Slicing based on variables or statements

follows a general backward slicing technique. Slicing based on

verification properties involves analyzing the variables that are

included in the verification properties as well as performing

backward slicing. As a result of the slicing, an intermediate

result (a closure slice) is generated (Fig. 3). The slicing criteria

for the closure slice is written in the first line of Fig. 3. The

example slicing criteria is on line 34 of the main function,

which is included in the ChangedSoS class. The lines from line

2 to the last line of the example intermediate output include

relevant Java bytecode instructions, including a class name, a

function name, and a line number.

The result of the dynamic backward slicing (the closure

slice) becomes an input for the next step. As described earlier

in Section III, ORBS repeats the deleting-observing-reverting

procedure. The difference between the original ORBS and

mORBS is shown in the deleting and observing steps. Unlike

ORBS, the closure slice guides mORBS on which statements

to delete in the deleting step. In the observing step, mORBS

3Observing internal details of execution by inserting code snippets into a
program

21

Fig. 4: The overall architecture of SIMVA-SoS

observes only the syntax errors in compilation instead of

comparing trajectories of an SoS model. In this way, mORBS

considers the random variables’ dependencies and can still

generate executable models.

In the mORBS part, the instructions are deleted one by one

from the last instruction of the probabilistic SoS simulation

model. However, if the instruction exists in the closure slice,

the proposed approach skips the deletion of the instruction and

deletes the next instruction. For example, after line 7 in the

ChangeSoS class’s main function is deleted, the next line to

be deleted would be line 6. The proposed approach will detect

that line 6 is contained in the closure slice, thus skipping line

6 and continuing to line 5.

The probabilistic SoS simulation model slice is compiled for

execution with one instruction deleted. If compilation errors

occur, the proposed approach reverts the deleted instruction.

When the proposed approach compiles the probabilistic SoS

simulation model, the compiled Java bytecode has lost some

information, such as where curly-brackets ({ }) were written

in the model. Thus, the closure slice does not have such

information. If line 9 of the main function that is included

in the ChangedSoS class contains a curly bracket and it is

deleted by the approach, the SoS probabilistic simulation

model without line 9 will invoke compilation errors. As a

result, the approach reverts to line 9 and tries to delete the next

line. This process repeats until there are no more instructions

to delete. After completing all the steps of the slicing approach,

an executable SoS simulation model slice is created with

respect to the verification property.

B. Architecture of SIMVA-SoS including a Slicing Module

The overall approach of SIMVA-SoS is divided into three

parts, as shown in Fig. 4: the modeler, the verifier, and the

slicer. The modeler generates an SoS model based on the

SoS meta-model; M2SoS [16], the verifier performs statistical

model checking for the probabilistic SoS simulation model,

and the model slicer performs model slicing with respect to

the verification properties for efficient verification.

The probabilistic SoS simulation model slice generated by

the slicing module can be used for analyzing and debugging

purposes. Users can extract the parts that are related to specific

variables, statements, or verification properties in which the

user is interested. The slicing criteria given to the SIMVA-

SoS model slicer include the package name, function name,

line number, and variable name. Users can input the exe-

cutable probabilistic SoS simulation model slice and other

libraries/programs to SIMVA-SoS verifier. The executable

probabilistic SoS simulation model slice is not automatically

given to the SIMVA-SoS verifier due to dependency with other

libraries. To improve verification efficiency and get accurate

verification results, the SIMVA-SoS slicer and the SIMVA-

SoS verifier should be given the same verification properties.

If different verification properties are given to the slicer and

verifier then the verifier will naturally provide an incorrect

result.

V. EVALUATION

We performed experiments on the MCI-response SoS sim-

ulation model to evaluate the proposed slicing technique. The

following three research questions were answered:

• RQ1. How accurate is the proposed technique from the

perspective of model similarity between the slice that is

generated by the proposed technique and the slice that is

generated by the static slicing technique?

• RQ2. Is the verification result of the original SoS simula-

tion model the same as that of the sliced SoS simulation

model?

• RQ3. How much time is saved when we perform statisti-

cal model checking on the sliced SoS simulation model?

We manually generated an SoS model slice following the

static backward slicing algorithm. We compared the manually

generated SoS model slice and the SoS model that was

generated by our technique in RQ1 to see how similar the

two models are. By answering RQ2, we can investigate the

verification accuracy by comparing the verification result of

the sliced model and that of the original model. The cost

efficiency of the proposed slicing technique can be analyzed

via RQ3. We compared the verification time of both the

original and the sliced model.

A. Experimental Setup and Design

For RQ1, the SoS simulation model which contains the

above MCI-response scenario was sliced to analyze which part

of the system performed the rescue of patients on land. We

measured the accuracy of the slicing technique by comparing

the manually-generated MCI-response SoS simulation model

with the MCI-response SoS simulation model slice. To per-

form the experiment for RQ2 and RQ3, we need the original

model, the slicing criteria, the verification properties, and

model slices. The SIMVA-SoS tool supports the verification

of six properties:

1) The probability that the number of patients on land will

be the same as the total expected number of patients is

more than the expected probability (existence).

2) Until the end of the simulation, the probability of the

resurrection of a dead patient on land is less than

expected (absence).

22

3) The probability that the ambulance is always in the

accident area by the end of the simulation is more than

expected (universality).

4) The probability that the number of patients who are

rescued on land after the designated time is greater

than that the threshold is likely to exceed the expected

probability (transient state).

5) The probability that the number of patients who are

rescued from land over a long period of time until the

end of simulation is greater than that the threshold is

more than expected (steady state).

6) The probability that the remaining number of patients

on land will exceed the threshold is maintained for at

least 100-unit times before the end of the simulation

(minimum duration).

For these six verification properties, we compared the results

of the original model with the model slice in RQ2, and

compared the verification times in RQ3.

We set the sample size up to 1,500 for the each verification

property, as well as setting the α and β as 0.05 for checking

Type I error and Type II error respectively. Similarly, the

maximum number of steps for each sample was set to 200.

We conducted the model verification using an Intel i7-7700

at 3.6GHz with 16GBs of memory on a 64-bit Windows 10

machine.

B. Experimental Results

RQ1. We compared the sliced model and the manually

generated model slice, per the static slicing algorithm [13], line

by line. Because ORBS is conducted on a line-by-line basis,

a difference between the models can occur by the deletion

of lines. We used the “compare” function of Notepad++ to

perform the comparison. The left model in Fig. 5 is the

manually-generated model slice, and the right model is the

SoS model slice that was generated by the proposed technique.

Lines that were not in the model slice on the right when it

was compared to the manually generated model on the left

are colored in red. The formula for accuracy measure was as

follows:

A∩B
A∪B × 100,

A : manually generated model slice
B : automatically generated model slice

As a result, 96.55% of the lines were similar to the

manually-generated model slice. The remaining 3.45% was

caused by the characteristic of sampling execution. Although

slicing the SoS model based on the simulation traces could

improve the efficiency, it could also degrade to some extent in

accuracy. For example, lines 18 to 22 in Fig. 5 show that the

patients occur in double, with a one-in-ten thousand chance.

With the number of patients determined, the simulation is

executed in lines 23 and 24. Per the algorithm of static

backward slicing, line 21 should not be deleted (left-hand side

in Fig. 5). However, the SoS model slice that is generated by

the proposed technique deletes line 23 because that line would

be executed with a rare probability; therefore, it is not in the

simulation trace.

RQ2. When slicing for verification rather than slicing for

analysis, it is necessary to confirm whether the verification

result of the model slice is the same as the verification result

of the original model to confirm the accuracy. After slicing

the original model based on slicing criteria and verifying the

original and sliced models on the six verification properties,

the verification results of the model slices and the origi-

nal model were compared. Fig. 6 demonstrates the results,

according to the six verification properties; the maximum

difference of the verification results was 2%. We think that

the difference between the two verification results was due

to the characteristics of statistical verification. Because the

input model of the statistical model checker has uncertainty,

the verification results may vary slightly depending on the

simulation executions.

RQ3. Finally, we verified how much time efficiency can be

achieved by slicing the model. We measured the verification

time of the SoS simulation model slices and the original

SoS simulation models, according to the six properties, while

answering RQ2. Fig. 7 shows the verification time for two

models for each verification property. As shown in the graph,

the verification time was reduced by about half in all the

verification properties. For instance, the most time-reduced

property was the existence (56.45%), and the least was the

transient state (47.59%). Because simulation is the most ex-

pensive aspect of SIMVA-SoS, we can significantly reduce

simulation times by reducing the model’s size. About 10% of

the SoS model’s size was reduced by the proposed approach,

which was mainly related to simulation of rescuing patients at

sea.

C. Limitations

Although the SIMVA-SoS model slicer module provides an

automated analysis, one disadvantage is that the user has to

manually input the model slice and the verification properties

into the SIMVA-SoS verifier module. Another limitation is

that we only compared two verification results of the original

model and the model slice in RQ2, and simple comparison

might not be enough to accurately reflect the slicing tech-

niques. In addition, we were limited by some of the original

techniques that we utilized. For example, the limitations of

JavaSlicer can lower the accuracy of the model slice for the

following reasons:

1) JavaSlicer cannot insert probes into some standard li-

brary classes, such as java.lang.String, java.lang.System,

and java.lang.Object.

2) There are limitations to tracing multi-threaded applica-

tions correctly; JavaSlicer does not construct integrated

data dependency graphs for different threads, and the

subject model that was used in the experiment is not a

multi-threaded application. This can be a problem when

the tool is used in extended MCI-response SoS models

or other domain SoS models that involve multi-threaded

applications.

3) JavaSlicer is only available in the JDK 1.6 and 1.7

versions.

23

Fig. 5: The result of comparing the manually-generated model slice (L) and the model slice that was generated by the proposed

technique (R)

Fig. 6: Comparing verification results of the six verification

properties between the original and the sliced models

Fig. 7: Comparing the verification time of the six verification

properties between the original and the sliced models

In SIMVA-SoS, we use Java as an intermediate representation

between the SoS modeling language and bytecode. Thus

our algorithm slices this general intermediate representation,

instead of the specific higher-level modeling language. We

have a plan to apply our approach to other executable SoS

modeling languages.

VI. RELATED WORK

Although SMC techniques generally scale better than other

model checking techniques with an increase in the size of

the state space [8], there remain performance issues that are

related to a single simulation time and the repetitive number

of samples generated.

Basu et al. [17] proposed an approach to efficiently apply

SMC techniques to heterogeneous systems. This approach

decreases the simulation time by executing not the entire

system, but each application under a specific execution context

respectively. This approach mainly focuses on generating the

specific execution context that describes all interactions with

other applications. However, this approach requires a prelimi-

nary stage for context generation and the execution time of the

stage is directly affected by the number of component systems.

By contrast, because our technique uses slicing technique,

the performance is not affected by the number of component

systems.

Jegourel et al. [18] presented the SMC platform, PLASMA,

which reduces both simulation time and the number of samples

for verification. PLASMA minimizes the number of states

that a simulation trace contains by compiling the model and

the properties into bytecode in advance and executing the

bytecode on its own simulation and logic virtual machine.

PLASMA also reduces the number of simulations by using

importance sampling to frequently detect rare behaviors. The

importance sampling tilts any probabilistic distributions of

the model and artificially increases the probability of rare

behaviors. However, a disadvantage to rare behaviors is that

developers must manually optimize the parametric values of

the tilted distribution with many simulations.

There are several related works on slicing in the context

of the model checking and slicing probabilistic program [3],

[19], [20]. Hatcliff et al. [19] proposed a deterministic slicing

algorithm for reducing the model that is needed for the

exhaustive model checking technique. By contrast, our work

focuses on slicing models for statistical model checking.

Hur et al. [20] presented an algorithm for slicing proba-

bilistic programs that focuses on extending traditional slicing

techniques for programs that are written in a probabilistic pro-

gramming language. The observing property of probabilistic

program languages necessitates an extension of the traditional

24

dependence graph to account for changes that are based on

probabilistic observation. This slicing algorithm is therefore

based on the language syntax of probabilistic programming

languages; as such, it is not directly extensible to general-

purpose languages, such as Java.

The SoS GaP Slicer by Song et al. [3] is a slicer that is made

to specifically slice models based on the dynamic changes of

SoS PRISM models. However, our proposed solution focuses

on the probabilistic SoS model analysis based on variables,

statements, and verification properties rather than changes to

the model. Therefore, our solution is more general in its use

of the features of slicing models that were written by using

Java.

VII. CONCLUSION

In this paper, we proposed the SIMVA-SoS model slicer

approach, including a SIMVA-SoS tool. Dynamic backward

slicing and observation-based slicing were combined in the

proposed technique. The generated model slice was formatted

in an executable Java program. Applying slicing techniques to

SoS simulation models is helpful in analyzing large, complex

SoSs efficiently as well as for statistically verifying a portion

of the system. Compared with the oracle model, the model

slice that was generated by the proposed technique showed an

accuracy of 96.55%. A comparison of the results of the model

slice and the original model showed that the verification time

was reduced by 47-56%, while it preserved the verification

results. In the future, we plan to apply the proposed technique

to other domains as well as MCI-response SoS. SIMVA-SoS

can support verification of general SoS models if the input

models are provided in Java. We also plan to propose a

similarity metric for measuring the accuracy of the slicing

technique for statistical model checking.

ACKNOWLEDGEMENT

This research was supported by the Institute for In-

formation & communications Technology Promotion (IITP)

grant funded by the Korea government (MSIP) (No. 2015-

0-00250, (SW Star Lab) Software R&D for Model-based

Analysis and Verification of Higher-order Large Complex

System), and Next-Generation Information Computing Devel-

opment Program through the National Research Foundation

of Korea(NRF) funded by the Ministry of Science, ICT

(2017M3C4A7066212).

REFERENCES

[1] A. Legay, J. Quilbeuf, and F. Oquendo, “Verifying System-of-Systems
with statistical model checking,” ERCIM News, vol. 103, 2015.

[2] D. Seo, D. Shin, Y.-M. Baek, J. Song, W. Yun, J. Kim, E. Jee, and
D.-H. Bae, “Modeling and Verification for Different Types of System
of Systems using PRISM,” in Proceedings of the 4th International
Workshop on Software Engineering for Systems-of-Systems. ACM,
2016, pp. 12–18.

[3] J. Song, Y.-M. Baek, M. Jin, E. Jee, and D.-H. Bae, “SoS GaP
Slicer: Slicing SoS Goal and PRISM Models for Change-Responsive
Verification of SoS,” in 2017 24th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2017, pp. 546–551.

[4] M. Jin, D. Shin, and D.-H. Bae, “ABC+: Extended Action-Benefit-
Cost Modeling with Knowledge-based Decision-making and Interaction
Model for System of Systems Simulation,” in Proceedings of the 33rd
Annual ACM Symposium on Applied Computing. ACM, 2018, pp.
1698–1701.

[5] C. Hammacher, K. Streit, S. Hack, and A. Zeller, “Profiling Java
Programs for Parallelism,” in Proc. 2nd International Workshop on
Multi-Core Software Engineering (IWMSE), May 2009, pp. 49–55.

[6] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and
S. Yoo, “ORBS: Language-independent Program Slicing,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 109–120. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635893

[7] A. Legay, B. Delahaye, and S. Bensalem, “Statistical Model Checking:
An Overview,” in International conference on runtime verification.
Springer, 2010, pp. 122–135.

[8] H. L. Younes, M. Kwiatkowska, G. Norman, and D. Parker, “Numerical
vs. Statistical Probabilistic Model Checking,” International Journal on
Software Tools for Technology Transfer, vol. 8, no. 3, pp. 216–228, 2006.

[9] W. Whitt, “Continuous-time Markov Chains,” Dept. of Industrial En-
gineering and Operations Research, Columbia University, New York,
2006.

[10] V. Nimal, “Statistical Approaches for Probabilistic Model Checking,”
Ph.D. dissertation, University of Oxford, 2010.

[11] A. Wald, “Sequential Tests of Statistical Hypotheses,” The annals of
mathematical statistics, vol. 16, no. 2, pp. 117–186, 1945.

[12] Y. Kim and M. Kim, “Hybrid Statistical Model Checking Technique for
Reliable Safety Critical Systems,” in Software Reliability Engineering
(ISSRE), 2012 IEEE 23rd International Symposium on. IEEE, 2012,
pp. 51–60.

[13] M. Weiser, “Program Slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. Piscataway,
NJ, USA: IEEE Press, 1981, pp. 439–449. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800078.802557

[14] G. A. Venkatesh, “The Semantic Approach to Program Slicing,”
in Proceedings of the ACM SIGPLAN 1991 Conference on
Programming Language Design and Implementation, ser. PLDI
’91. New York, NY, USA: ACM, 1991, pp. 107–119. [Online].
Available: http://doi.acm.org/10.1145/113445.113455

[15] D. Jackson and E. J. Rollins, “A New Model of Program Dependences
for Reverse Engineering,” in Proceedings of the 2Nd ACM SIGSOFT
Symposium on Foundations of Software Engineering, ser. SIGSOFT
’94. New York, NY, USA: ACM, 1994, pp. 2–10. [Online]. Available:
http://doi.acm.org/10.1145/193173.195281

[16] Y.-M. Baek, J. Song, Y.-J. Shin, S. Park, and D.-H. Bae, “A meta-model
for representing system-of-systems ontologies,” in 2018 IEEE/ACM 6th
International Workshop on Software Engineering for Systems-of-Systems
(SESoS). IEEE, 2018, pp. 1–7.

[17] A. Basu, S. Bensalem, M. Bozga, B. Caillaud, B. Delahaye, and
A. Legay, “Statistical Abstraction and Model-checking of Large Het-
erogeneous Systems,” in Formal Techniques for Distributed Systems.
Springer, 2010, pp. 32–46.

[18] C. Jegourel, A. Legay, and S. Sedwards, “A Platform for High Per-
formance Statistical Model Checking–PLASMA,” in International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2012, pp. 498–503.

[19] J. Hatcliff, M. B. Dwyer, and H. Zheng, “Slicing Software
for Model Construction,” Higher-Order and Symbolic Computation,
vol. 13, no. 4, pp. 315–353, Dec. 2000. [Online]. Available:
https://doi.org/10.1023/A:1026599015809

[20] C.-K. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel, “Slicing
Probabilistic Programs,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’14. New York, NY, USA: ACM, 2014, pp. 133–144.
[Online]. Available: http://doi.acm.org/10.1145/2594291.2594303

25

