Spectrum-Based Fault Localization on a
Collaboration Graph of a System-of-Systems

Yong-Jun Shin, Sangwon Hyun, Young-Min Baek, and Doo-Hwan Bae
School of Computing
Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, South Korea
{yjshin, swhyun, ymbaek, bae} @se.kaist.ac.kr

Abstract—A System-of-Systems (SoS) consists of independent
and autonomous constituent systems (CSs) which collaborate
to achieve an SoS goal. For SoS engineers, it is important to
verify the results of the collaboration for an SoS goal. Statistical
verification can be used to verify a large and complex SoS and
to provide quantitative verification results. However, even when
a failure of an SoS goal or a violation of a verification property
is detected, it often requires a huge cost to find faults of an SoS
because of the size of the SoS and the lack of information about
independent CSs. In this paper, we propose a fault localization
technique for an SoS to reduce the debugging cost by prioritizing
suspicious entities of an SoS. This technique requires only an
abstract model of the collaboration, named as a collaboration
graph, which includes the presence or absence of CSs and
their interactions. It extends a spectrum-based fault localization
(SBFL) technique to utilize quantitative results of the statistical
verification of an SoS. In the evaluation, we show that it is feasible
to apply SBFL to SoS fault localization, and our approach is
expected to effectively reduce the debugging space of an SoS.

Index Terms—System-of-Systems, collaboration graph, fault
localization, spectrum-based fault localization, debugging

I. INTRODUCTION

A System-of-Systems (SoS) is a large-scale complex system
which consists of independent and autonomous constituent
systems (CSs) contributing to achieve an SoS-level common
goal(s) [1]. The SoS goal is one that is hard to achieve with
a monolithic system, thus it is achieved by collaborations
and cooperations of the CSs as they interact with each other
utilizing SoS resources [2]. To guarantee the goal achievement
of an SoS, CSs in an SoS should effectively provide their own
capabilities in the form of collaborations. In addition, interac-
tions between CSs should enable an effective collaboration
within an SoS.

For SoS engineers, it is important to verify whether an
SoS goal can be successfully fulfilled by the collaboration.
For the SoS verification, statistical verification is one of the
well known techniques that provides quantitative verification
results [3], [4]. However, even if the SoS model has demon-
strably failed to fully achieve goals or satisfy properties,
identifying and localizing faults that induce the failure of
an SoS are additional concerns. Because of the size and
complexity of an SoS, the cost of finding the faults of an
SoS is too high. Furthermore, SoS engineers may not have
sufficient information to inspect independent CSs. Therefore,

there is a need to reduce the cost of finding faults of an SoS
for efficient debugging.

The cost can be cut down by localizing areas or entities
that induce failures or by providing search priorities. Studies
on fault localization have tried to provide systematic methods
to find the location of bugs in a system. The studies have
focused on localizing bugs in the source code or components
of the system. However, the granularity of localization is
not suitable for SoS debugging, and those techniques do
not take into account the characteristics of an SoS that the
independent and autonomous CSs collaboratively achieve SoS
goals. Therefore, a localization technique that considers the
unique characteristics of an SoS is necessary. In this paper,
we propose a spectrum-based fault localization technique to
prioritize debugging of suspicious CSs or interactions that
induce an SoS failure. The main goal of this study is to propose
a fault localization technique specifically applicable to an SoS,
and the major features of our technique can be summarized
as follows:

o It applies a spectrum-based fault localization (SBFL)
technique to the collaboration graph of an SoS, which is
an abstract model of CS collaboration and interactions.
This technique aims to localize CSs and interactions that
induce a failure of an SoS.

o It considers the lack of information available to SoS
engineers about independent and autonomous CSs. By
representing an SoS as a collaboration graph, it can
be used even when the only information available is
the presence or absence of entities participating in the
collaboration.

« It utilizes the quantitative results of statistical verification
of an SoS. Accumulated statistical verification results of
diverse collaborations of an SoS can be used for fault
localization.

The remainder of this paper is organized as follows: Sec-
tions 2 and 3 introduce the related works and background of
this work. Section 4 introduces our fault localization technique
on the collaboration graph of an SoS. Sections 5 and 6 show
the experiment and evaluation to validate our localization tech-
nique. Section 7 introduces the discussion points of this study.
Section 8 concludes this study by noting its contributions and
pointing towards future work.

131

978-1-7281-0457-7/2019/$31.00 (©2019 IEEE

II. RELATED WORK

Fault localization technique is one that identify locations
of faults in a software, and several techniques have been
proposed [5]-[7]. They localize faults or root causes of the
software failure by using static code analysis or testing execu-
tion information. Some studies also have presented methods
to localize faults on a concurrent program that has non-
deterministic behavior [6], [7]. However, the localization unit
of those studies is a statement or a predicate of the source
code. Since an SoS is not a monolithic system but a large-
scale system with many constituent systems combined, it is
difficult to directly apply these methods to SoS engineering.

Several techniques have localized faults of a large and
complex system with multiple components, such as distributed
network systems [8]-[11]. Some studies represent a target
system as a graph or a set of component systems [8], [9], [11],
and they utilize execution information from the components or
the structure of the system to localize faults. However, since
an SoS is not a simple set of components but a group of
CSs that dynamically collaborate, a fault localization technique
considering the characteristics of SoS collaboration is needed.

Some other techniques manipulated the component systems
of the distributed system or extracted information from them.
Qi et al. utilized a neural network to analyze the execution
information of the component system [10]. Pham et al. pro-
posed a fault injection method to determine the root causes
of faults in the distributed system [8]. Rish et al. presented
an active probing algorithm that maximizes information gain
and minimizes the size of the probe set adaptively to identify
performance-degrading components [11]. However, because
the CSs that make up an SoS are developed and operated
independently and they often collaborate for the SoS goal in
a bottom-up manner, SoS engineers find it difficult to rely on
manipulation of or information from CSs.

Previous techniques have attempted to minimize the fault
localization cost of large-scale systems. However, a technique
for SoS debugging, considering the collaborative goal achieve-
ment by independent and autonomous CSs and the limited
information SoS engineers can glean from CSs, is needed. In
this paper, we propose a fault localization approach for SoS.

III. BACKGROUND

Spectrum-based fault localization (SBFL) is one of the fault
localization techniques that localize suspicious entities using
information of program spectra. A program spectrum is an
executed trace of a program with specific granularity, such
as statements, predicates, or methods [5]. A key idea of the
SBFL is that the more times an entity is executed in failed
cases, the more suspicious the entity is. The input of the SBFL
technique is a set of pairs of program spectra and the testing
result of the spectra. Recent studies of SBFL use both failed
and successful test cases [5]. By using these inputs, the SBFL
is able to calculate a suspiciousness value for each entity of a
program, such as a statement of source code.

In this paper, we extend Tarantula [12], which is one of
the widely used SBFL techniques, for fault localization on the

< SoS Scenario)

Identification of
CSs and interactions of an SoS

l —————————————— >

Generation of a collaboration graph

Identified CSs and
interactions: €Sy, INT o

___________ - Collaboration graph:
CG=(CSan, INT 1)

Iteration (n times)

Generation of
a collaboration graph under test

Collaboration graph
under test: m
CG.,=(CSy,, INT,,)

2 (Verification property)

Statistical verification (t;) of
the collaboration

Verification results of collaborations (CGy)

_____ » CGr CG,, CG,, . CGy,
Verification results %L/ Ry 76%
cG Fault localization on
............. » 1 05@__ 06
SoS collaboration graph [——__ 04
[03 03 —

Suspiciousness on
collaboration graph

Examination of suspicious entities

Legend
[]:process () : specification

: intermediate output » :input ——» : output

Fig. 1. Overall process of spectrum-based fault localization on a collaboration
graph of an SoS

collaboration of an SoS. Because of the size of an SoS, it is
hard to apply typical SBFL on the SoS using statement or
predicates of source code as a localization entity. However, in
terms of the collaboration of the SoS, an entity participating
in a collaboration can show a spectrum of collaboration and
can be regarded as a localization entity. A set of entities in an
SoS collaboration as a spectrum and their verification result
can be used as an input of the SBFL technique. In this paper,
we propose an extension of the SBFL technique specifically
for SoS, regarding CSs and their interactions participating in
an SoS collaboration as localization entities.

IV. FAULT LOCALIZATION OF A SYSTEM-OF-SYSTEMS
A. Overall process

We propose a spectrum-based fault localization (SBFL)
technique to prioritize suspicious entities on a collaboration
of an SoS. Figure 1 shows the overall process of localization
for an SoS. From the given SoS scenario specification, SoS
engineers identify CSs and interactions that belong to the SoS.
An SoS may have multiple CSs that can participate in the
collaboration. In addition, two CSs may or may not be able to
interact with each other. Identified CSs and interactions from
the scenario specification are modeled as a set of nodes and
edges of the collaboration graph. A collaboration graph, which
is an abstract model of collaborations in an SoS, is generated
as a combination of a set of nodes and a set of edges by
a definition of a graph. In this paper, although each CS and
interaction may have detailed specifications, we abstract an

132

SoS and focus on defining a model representing a collaboration
at the SoS level and applying an SBFL technique.

From the collaboration graph of an SoS, SoS engineers
can generate a partial collaboration of the SoS, called a col-
laboration graph under test. Statistical verification shows the
extent to which an SoS goal is satisfied by the collaboration.
For statistical verification, an SoS goal is represented as a
verification property [3], [13]. The verification result is a
quantitative possibility of satisfying the goal by the given
collaboration. For SoS verification, we utilize statistical model
checking (SMC). With the iterative verification, accumulated
pairs of collaboration graphs under test and statistical veri-
fication results are inputs of the fault localization technique.
At this point, the suspiciousness of each node or edge of an
SoS collaboration graph is calculated. The suspiciousness of
an SoS entity is a quantitative indicator of how often an SoS
goal was not achieved when the entity participated in SoS
collaboration. The equation of the suspiciousness of an SoS
entity can be extended from various SBFL formulas, and we
use the Tarantula formula [12]. The suspiciousness of an entity
is a value between O and 1, where a larger number means a
higher possibility of inducing the failure of an SoS goal. Based
on the calculated suspiciousness values, failure-inducing CSs
or interactions can be prioritized to be considered first by SoS
engineers for SoS failure debugging.

Calculating the suspiciousness of an entity is basically
increasing (decreasing) the suspiciousness of an entity in a
collaboration graph under test which has low (high) goal
achievement, respectively. Details of the input/output and the
method of the SBFL technique on an SoS collaboration graph
are described in the next sections.

B. Collaboration Graph of a System-of-Systems

An SoS consists of multiple CSs which can interact with
each other and share information. The collaboration of CSs
allows an SoS to achieve its goals. However, even though CSs
belong to an SoS, the CSs are independent and autonomous, so
each is limited in the information it can offer to SoS engineers.
Therefore, in this paper, we represent the SoS collaboration as
a graph-formed model, named as a collaboration graph. The
collaboration graph C'G is defined as:

CG =(CSau, INT 1)
C'Sqi ={v;|v; is an ith constituent system of an SoS,
1 <4 < m,where m is the total number of
constituent systems in an SoS}
INT. ={ev, v,|€v, v, 1S an interaction between v, and vy,
where vq, vy € CSay,a # b, ey, v, = €yt (1)
CSyy refers to a set of all CSs belonging to an SoS, and is
abstracted as nodes of the collaboration graph. I NT,;; refers
to a set of all interactions that may exist between two arbitrary
CSs, and is abstracted as edges of the collaboration graph.
In this paper, an interaction is regarded as a bi-directional

edge. SoS engineers can identify CSs and interactions and
graphically model the collaboration of the SoS.

Collaboration graph under test (CG,,)
Collaboration graph of SoS (CG)| 1 2 3 4 5 6 |*Sus.|Rank
Node (CSau) {
CS1 (]) ® | @ (048 |6
CcS2 [] [] [] 04 |7
CS3 |/ fault [[] @ (073 |2
CS4 (] [® | ®@ | ® |048 |5
}
Edge (INTq) {
CS1-CS2 (] 0.1 |9
CS1-CS3 [] 06 |4
CS2-CS3 (] 07 |3
CS2-CS4 (] @ 0.25 |8
CS3-CS4 |l fault [@ (08 |1
}
Goal achievement probability | 0.9 | 0.6 | 0.4 | 0.3 | 0.7 | 0.1

*Suspiciousness

Fig. 2. Example of SBFL on a collaboration graph of an SoS

An SoS can dynamically create a collaboration using re-
sources, including CSs and their interactions, to maximize SoS
goal achievement. SoS engineers can select some CSs and
interactions and verify their collaboration. The collaboration
can also be represented as a graph and we call it a collaboration
graph under test. The kth collaboration graph under test CGY,
is defined as:

OGtk = (CstkaINTtk)
CSy, € CSau, INT;,, € INTay @)

CGy, is a subgraph of the CG of an SoS because all
possible CSs and interactions of an SoS are represented in
the collaboration graph, and some of them are selected for
verification of potential collaboration.

In order to achieve the SoS goal, the collaboration of
various CS and interaction combinations can be considered,
and each of them can have different goal achievement. The
goal achievement of each collaboration is obtained through
statistical verification [3]. We assume that SoS engineers have
a number of collaboration graphs under test (C'G¢, s) and their
verification results. The set of pairs of a CGy, and verification
result is the input of our SBFL technique for an SoS. The
suspiciousness value calculation is covered in the next section.

C. Suspiciousness calculation on collaboration graph

Given a set of pairs of an SoS collaboration graph under
test (CGy,) and a verification result, the diverse potential
collaborations of an SoS and their expected goal achievement
can be shown. This information is used to localize CSs and
interactions that induce SoS failure, in the same way that a test
suite is used to find a software bug. Figure 2 shows an example
of our technique. In the example, the collaboration graph
(CG) of an SoS has four CSs and five interactions that can
participate in a collaboration, and the graph is represented by
sets of nodes and edges. There are six C'Gy, s, and dots show
participation of an entity in a collaboration. Every C'Gy, has a
goal achievement probability that was statistically verified. In
the example, CS3 and the interaction between CS3 and CS4
have faults which affect SoS goal achievement. Collaborations
including the faulty CS or interaction have relatively lower
goal achievement probabilities than the others. Based on the

133

diverse combinations of SoS entities and goal achievement
results, the suspiciousness values are calculated and the faulty
CS and interaction get higher suspiciousness values than the
other entities.

The suspiciousness of an entity = in a collaboration graph,
either a CS (v) or an interaction (e), is defined with the
following equation:

failedProb(x)
total Failed Prob
passedProb(x) failedProb(x)
total Passed Prob + total Failed Prob

suspiciousness(x) =

Equation 3 is extended from the Tarantula technique [12]
to utilize statistical verification results. In the equation, there
are four parameters. passedProb(x) is the sum of goal
achievement probabilities of CGy, s that include the entity x.
In the example of Figure 2, passedProb(x) of the edge CS3-
CS4 is 0.4(= 0.3 +0.1). Similarly, failed Prob(x) is the sum
of goal failure probabilities, which is (1—goal achievement
probability), of CGY, s that include the entity . In the exam-
ple, failedProb(zx) of the edge CS3-CS4 is 1.6(= 0.7 +0.9).
total Passed Prob is the sum of goal achievement probabil-
ities of all CGy,s. Likewise, totalFailedProb is the sum
of goal failure probabilities of all C'Gy,s. In the example,
total Passed Prob and total Failed Prob are 3(= 0.9 4+ 0.6 +
0.44+0.340.74+0.1) and 3(= 0.14+0.440.64+0.7+0.34+0.9),
respectively.

Following Equation 3, suspiciousness of all nodes and edges
can be calculated using the verification results. In addition,
based on the calculated suspiciousness values, CSs and inter-
actions of an SoS can be prioritized for efficient debugging.
An entity of an SoS that has a higher possibility to induce
SoS failure may have a higher rank in the debugging order
by virtue of its suspiciousness. Therefore, SoS engineers can
reduce debugging costs.

V. EXPERIMENT

To validate our localization technique, we apply our tech-
nique to a specific SoS example, mass casualty incident (MCI)
response SoS. A goal of the SoS is rescuing more than
80% of patients within a given time frame. There are two
kinds of heterogeneous CSs: rescue robot and patrol drone.
A rescue robot randomly searches patients in the area of an
incident and rescues a patient relying on its rescue rate. A
patrol drone scouts the area of an incident faster than robots,
helping robots to find patients faster and relying on the patient
recognition rate of its camera. The location information of
patients discovered by the drones is transmitted to the robots.
The interaction has a message delivery delay as an attribute.
The independent robots, drones, and interactions can have
different capabilities or attributes, which can affect the patient
rescue of the MCI response SoS.

Based on the scenario, all CSs and interactions are modeled
as a collaboration graph of the SoS, and their capabilities and
attributes were initialized randomly. To validate whether our
technique can localize failure-inducing CSs and interactions,
we randomly inserted faults into the capabilities of CSs and

TABLE 1
EXPERIMENT SETUP
Parameter Value

Simulation time 130 tick
SoS goal (MCI response SoS shall achieve a patient

e L 0.8
rescue rate of % or greater within simulation time.)
The number of patients 100
Size of the map 20x20 tiles
The total number of rescue robots of SoS 10
The total number of patrol drones of SoS 10
The total number of interactions of SoS 100

The number of faulty rescue robots of SoS in scenario 1 | 2
Rescue rate of a rescue robot (fault-seeded - scenario 1) | about 1 (0.5)
The number of faulty patrol drones of SoS in scenario 2 | 2
Patient recognition rate of a patrol drone (fault-seeded - about 1 (0.1)

scenario 2)

The number of faulty interactions of SoS in scenario 3 2
Interaction delay (fault-seeded - scenario 3) 1 (50) tick
The number of rescue robots participating in a partial 3
collaboration graph

The number of patrol drones participating in a partial 3
collaboration graph

The number of interactions participating in a partial 3
collaboration graph

The size of a set of pairs of collaboration graph under 100

test and verification result used for a localization

interactions. In the fault-seeded SoS, the collaboration graph
under test is randomly selected and statistically verified. The
statistical verification was conducted by an open source tool,
SIMVA-SoS (Simulation-based Verification and Analysis for
SoS) [13]'. SIMVA-SoS executes the discrete event simulation
and statistical model checking using the SPRT algorithm
on the input model. The verification results were used for
fault localization, and the localization results were analyzed,
whether or not fault-seeded entities were localized. Details of
the scenario and fault seeding settings are in Table 1.

The MCI response SoS of our experiment has 10 rescue
robots, 10 patrol drones, and 100 interactions between the
robots and drones. The CSs and interactions compose an
SoS collaboration graph, and collaboration graphs under test,
including randomly chosen three each of robots, drones,
and interactions, were verified. There are three scenarios for
evaluation. In scenario 1, there are two faulty rescue robots out
of 10, and the rescue rate of a normal robot is about 1 while
that of a faulty robot is about 0.5. In scenario 2, there are two
faulty patrol drones out of 10, and the patient recognition of a
normal drone is about 1 while that of a faulty drone is about
0.1. Scenario 1 and scenario 2 have artificial faults in CSs,
which are nodes of a collaboration graph. Scenario 3 has faults
in interactions between CSs. There are two faulty interactions
out of 100, whose interaction delay is 50 tick, but that of
a normal interaction is 1 tick. The parameters representing
faults of the three scenarios were set so that a fault reduces
the SoS goal achievement probability variously from about
10% to 50%. We have repeatedly tested each of these three
scenarios 90 times to evaluate the performance and feasibility
of our localization technique for an SoS.

'SIMVA-SoS: github.com/SES0S/SIMVA-SoS

134

Localization results (EXAM score)
100 —_—
90

80 = %
70
60
50
40
30
20

% of SoS entities that need not be examined

scenario 3
(faulty interactions)

scenario 2
(faulty drones)

scenario 1
(faulty robots)

Fig. 3. Reduced costs to find faults of an SoS in experimental scenarios

VI. EVALUATION

To ensure the localization technique for an SoS is actually
helpful to SoS engineers seeking to find faults of the SoS, we
identified an EXAM score [12] of the localization results for
each scenario in Figure 3. The EXAM score is a percentage
of SoS entities that engineers do not need to examine in order
to find faults in the collaboration graph. The total entities for
localization in this experiment are all of CSs and interactions
of the SoS collaboration graph, for a total of 120 entities.
Figure 3 shows the reduced cost to find faults of the SoS.

In all three scenarios, we can see that on average, about
88% of entities do not need to be examined. In particular for
scenario 3, where the faults were inserted in interactions, in
most cases, all faulty interactions were localized at the top of
the suspiciousness list, so about 99% of entities do not need to
be examined. Scenarios 1 and 2, in which faults were inserted
in CSs, scored an average of 85.41% and 81.66%, respectively.

In terms of EXAM scores, scenario 1 and 2, where there
were faults in the nodes of the collaboration graph, showed
lower performance than scenario 3, where there were faults
in the edges. This is because if a node has a fault, the edges
connected with that node are highly suspected together. This is
a natural result, because the edges belong to the collaboration
graph together with the faulty node. However, when a node has
a fault, the majority of the edges that are more suspicious than
the node are connected to the faulty node, so the SoS engineers
can have an intuition to find the real fault. In fact, for scenarios
1 and 2, about 60% of the edges that got higher suspiciousness
than a faulty CS were connected with the faulty CS. Therefore,
the localization results effectively reduced debugging cost.

Figure 4 shows the suspiciousness values for each faulty
or normal entity. In all three scenarios, the suspiciousness
values of faulty entities are generally higher than those of
normal entities, indicating that suspiciousness value identifies
a fault. This indicates that the likelihood that entities have a
fault can be compared based on their suspiciousness values.
Figure 4 also shows the performance difference by scenarios.
In scenario 3, the suspiciousness values of faulty interactions

Localization results (suspiciousness)
1

0.9 - s
o 5

0.7 +
-
0.5 E

0.4
0.3

0.2 8
0.1

Suspiciousness value of SoS entities

faulty normal
scenario 1

faulty normal
scenario 2

faulty normal
scenario 3

Fig. 4. Suspiciousness values for finding faults of an SoS

were higher than that of all normal entities except outliers.
On the other hand, scenarios 1 and 2 had normal entities with
higher suspiciousness than faulty CSs. Most of those were
interactions connected to faulty CSs as described above.

In Figure 4, the differences between scenario 1 and 2
are noticeable. The suspiciousness values of faulty CSs in
scenario 2 were lower than those in scenario 1. It also appears
that scenario 2 has a lower EXAM score than scenario 1 in
Figure 3. This is because the different faults have different
impacts on achieving SoS goals. A suspiciousness is calculated
differently depending on a goal achievement probability by
statistical verification result. In fact, the fault of a rescue robot
in scenario 1 reduced the goal achievement possibility by
about 48%, while the fault of a patrol drone in scenario 2
reduced the goal achievement by only about 15%. It can be
seen that the suspiciousness of an SoS entity is calculated to
be higher as the entity further hinders the goal achievement.
It confirms that our localization technique distinguishes faulty
SoS entities from normal entities and gives a suspiciousness
depending on the impact each entity has on the SoS goal.

This experiment is limited to the given scenarios but showed
that the SBFL technique can be applied to a collaboration
graph of an SoS and effectively reduces the debugging cost.
In addition, EXAM score varies depending on whether there
is a fault in the node or edge of the collaboration graph, and
suspiciousness values are given depending on the impact on
goal achievement. Moreover, by demonstrating the feasibility
of the localization technique for an SoS, we underscore the
need for further research on localization utilizing SoS models
and quantitative verification results.

VII. DISCUSSION

SoS Representation. For simulation-based analysis, the
accuracy of verification results depends on the precision of
the simulation model. From a high-level perspective, an SoS
can be defined as a goal-oriented system consisting of hetero-
geneous and autonomous CSs that each possesses contributory
capability. This study models an SoS as a collaboration graph

135

that represents highly abstracted SoS structures and capability-
based behaviors. Since an SoS consists of CSs with limited
knowledge (i.e., black-box), the abstract representation might
be a more realistic approach. Also, the collaboration graphs
are shown to be successfully used for fault localization, even
though they are quite abstract models. If a simulation model is
more elaborately established based on domain knowledge and
meta-models [2], the effectiveness of fault localization can be
further improved.

Statistical Model Checking. Our approach utilizes
simulation-based statistical model checking (SMC) as a quan-
titative analysis method for fault localization. Among various
quantitative verification methods, SMC is one of the well-
established verification techniques to verify non-deterministic
systems [14]. Since an SoS has a great deal of uncertainty
due to its diverse and dynamic nature, SMC can be more
proper than other typical verification methods to evaluate and
predict the goal achievement quantitatively [3]. For an SoS
consisting of black-box CSs, in particular, probabilistic and
non-deterministic behaviors should be analyzed in terms of
high-level goal achievement. Simulation-based approaches en-
able engineers to observe emergent behaviors and phenomena
caused by collaborations within SoS.

Implementation of Scenario. An SoS is composed of multi-
ple heterogeneous systems from different domains, so it could
be valuable if a scenario is implemented based on real-system
circumstances. However, the main purpose of this study is to
analyze the feasibility of fault localization techniques for SoS
engineering. Structure of the scenario used in the experiment
is quite simple, but it contains major SoS characteristics in an
abstract way. The MCI response SoS consists of autonomous
and independent systems that communicate with each other
to achieve a higher-level common goal. The diversity of CSs
is reflected both in CSs’ capability and in CSs’ potential for
failures. Our simulation model is open-sourced?, thus not only
the collaboration graphs but the component objects can be
improved or differently configured.

VIII. CONCLUSION

Finding the faults for debugging failures of an SoS goal is
highly time consuming because of the size of SoS and lack of
information about independent CSs. In this paper, to reduce
the debugging cost of an SoS, we proposed a fault-localization
technique that prioritizes suspicious CSs and interactions of
an SoS. It extends a spectrum-based fault localization (SBFL)
technique for a collaboration graph of an SoS. It represents
an SoS as a collaboration graph, and it can be derived
from the limited knowledge of SoS engineers about the SoS
collaboration. In addition, it utilizes the quantitative results of
SoS statistical verification. In the evaluation, we showed that
our technique can localize the suspicious CSs and interactions
of an SoS. The localization results of the evaluation scenario
reduced the debugging cost of the SoS by an average of 88%.
Current evaluation was done with artificial faults on abstract

2github.com/SES0S/SIMVA-SoS/tree/localization

scenarios and models, but we will extend our target model to
more complex SoS such as platooning systems with various
scenarios for localizing emergent failures in future work.

ACKNOWLEDGEMENTS

This research was supported by the Institute for In-
formation & communications Technology Promotion (IITP)
grant funded by the Korea government (MSIP) (No. 2015-
0-00250, (SW Star Lab) Software R&D for Model-based
Analysis and Verification of Higher-order Large Complex
System), and Next-Generation Information Computing Devel-
opment Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Science, ICT
(2017M3C4A7066212).

REFERENCES

[11 C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-
leska, “Systems of systems engineering: basic concepts, model-based
techniques, and research directions,” ACM Computing Surveys (CSUR),
vol. 48, no. 2, p. 18, 2015.

[2] Y.-M. Baek, J. Song, Y.-J. Shin, S. Park, and D.-H. Bae, “A meta-model
for representing system-of-systems ontologies,” in 2018 IEEE/ACM 6th
International Workshop on Software Engineering for Systems-of-Systems
(SESoS). 1EEE, 2018, pp. 1-7.

[3] D. Seo, D. Shin, Y.-M. Baek, J. Song, W. Yun, J. Kim, E. Jee, and
D.-H. Bae, “Modeling and verification for different types of system of
systems using prism,” in Proceedings of the 4th International Workshop
on Software Engineering for Systems-of-Systems. ACM, 2016, pp. 12—
18.

[4] A. Mignogna, L. Mangeruca, B. Boyer, A. Legay, and A. Arnold, “Sos
contract verification using statistical model checking,” arXiv preprint
arXiv:1311.3632, 2013.

[51 W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707-740, 2016.

[6] F. Koca, H. Sozer, and R. Abreu, “Spectrum-based fault localization
for diagnosing concurrency faults,” in Testing Software and Systems,
H. Yenigiin, C. Yilmaz, and A. Ulrich, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 239-254.

[71 E. H. d. S. Alves, L. C. Cordeiro, and E. B. de Lima Filho, “Fault
localization in multi-threaded ¢ programs using bounded model check-
ing,” in 2015 Brazilian Symposium on Computing Systems Engineering
(SBESC). IEEE, 2015, pp. 96-101.

[8] C. Pham, L. Wang, B.-C. Tak, S. Baset, C. Tang, Z. T. Kalbarczyk,
and R. K. Iyer, “Failure diagnosis for distributed systems using targeted
fault injection.” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp.
503-516, 2017.

[9] A. B. Sharma, H. Chen, M. Ding, K. Yoshihira, and G. Jiang, “Fault

detection and localization in distributed systems using invariant relation-

ships,” in Dependable Systems and Networks (DSN), 2013 43rd Annual

IEEE/IFIP International Conference on. IEEE, 2013, pp. 1-8.

G. Qi, L. Yao, and A. V. Uzunov, “Fault detection and localization in

distributed systems using recurrent convolutional neural networks,” in

International Conference on Advanced Data Mining and Applications.

Springer, 2017, pp. 33-48.

I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik,

and K. Hernandez, “Adaptive diagnosis in distributed systems,” IEEE

Transactions on neural networks, vol. 16, no. 5, pp. 1088-1109, 2005.

[12] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula

automatic fault-localization technique,” in Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineer-

ing. ACM, 2005, pp. 273-282.

M. Jin, D. Shin, and D.-H. Bae, “Abc+: extended action-benefit-cost

modeling with knowledge-based decision-making and interaction model

for system of systems simulation,” in Proceedings of the 33rd Annual

ACM Symposium on Applied Computing. ACM, 2018, pp. 1698-1701.

K. Sen, M. Viswanathan, and G. Agha, “Statistical model checking

of black-box probabilistic systems,” in Computer Aided Verification,

R. Alur and D. A. Peled, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2004, pp. 202-215.

(10]

[11]

[13]

[14]

136

