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Abstract—A System-of-Systems (SoS) is a large and complex
system containing multiple Constituent Systems (CS) to achieve
common goals. To verify the common goals in an SoS, one of the
common approaches is a simulation-based verification. In this
study, we develop the simulation-based verification and analysis
for system of systems (SIMVA-SoS) tool. SIMVA-SoS consists of
interactive simulation and statistical verification. The interactive
simulation follows discrete-time and multi-agent simulation struc-
tures and enables continuous evolutionary representation. The
statistical verification runs the simulation repeatedly and uses
the simulation results to statistically determine the satisfaction
of verification properties. In the case study, a stimulus was
injected into the interactive simulator at runtime to examine the
expressiveness of continuous evolution, and statistical verification
results were analyzed. The SoS representation through interactive
simulation and solving the state explosion problem through
statistical verification confirmed the possibility of the simulation-
based verification of the SoS.

Index Terms—System of systems, constituent system, interac-
tive simulation, statistical verification

I. INTRODUCTION

A System-of-Systems (SoS) is a large and complex system

containing multiple Constituent Systems (CSs) to achieve

common goals [1]. Achieving a common goal with multiple

CSs is more difficult than achieving a goal in one single

system, because it needs complex interactions between CSs.

SoS is used in many domains including energy management

systems, traffic control systems, and mass casualty incident

response systems. These are all safety-critical systems that can

cause enormous damage to human resources and the environ-

ment when the systems fail. Thus, a systematic verification

technique for SoS in various domains is required.

One of the approaches to verify common goals in an SoS

is simulation-based verification [2], [3]. The main reasons for

choosing a simulation-based verification approach are (1) it

is infeasible and impractical to conduct an experiment on

a real SoS, (2) the simulation gives insight into the unique

characteristics of the SoS and helps in visualization, and (3)

it can alleviate the state explosion problem [4] which is one

of the main problems in verification.

For the simulation-based verification of an SoS, simulation

techniques to suit the characteristics of an SoS are needed.

An SoS has five characteristics: managerial and operational

independence, geographic distribution, evolutionary develop-

ment, and emergent behaviors [1]. The first three are related

to a CS and the other two, to an SoS. To reflect these

characteristics in a simulator, we applied a discrete-time and

multi-agent simulation techniques. The discrete-time simula-

tion structure reflects evolutionary development [5], and a

multi-agent simulation structure is used to reflect the CS’s

characteristics [6]. In this study, we define this simulator as

an interactive simulator. Most of the existing SoS simulator

including our previous work, lack the ability to allow dynamic

changes during simulation as all inputs are required to be de-

fined before execution. However, an interactive simulator can

reflect evolutionary development features, by allowing users

to inject new scenario events during the simulation. Finally,

the emergent behavior can be shown during the simulation.

To verify the achievement of common goals, typical veri-

fication method such as model checking can be applied [7],

[8]. However, owing to the size and complexity of an SoS,

the verification efficiency is affected by the state explosion

problem. The state explosion problem occurs as the size of

the system state space increases exponentially as the num-

ber of state variables in the system increases. A statistical

model checking (SMC) technique is proposed to improve the

efficiency of an exhaustive model checking technique, and

it is one of the effective ways to avoid the state explosion

problem in verification. It simulates the model several times

and statistically verifies whether the verification properties

are satisfied based on the accumulated simulation results.

Against this background, the properties can be verified through

statistical verification to verify the achievement of the common

goals.

This study makes the following contributions:

• We propose an architecture and workflow for interactive

simulation of SoS that allows users to modify the simula-

tion model and scenario during the simulation to represent

the evolutionary development.

• We applied the statistical verification technique to SoS

goal verification using the interactive simulation by spec-

ifying an SoS goal as a verification property.

The rest of this paper is structured as follows. In Sec-

tion II, we describe the SMC statistical verification technique.
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In Section III we review and analyze the SoS simulation

and SoS verification. Section IV presents the architecture

of the developed simulation-based verification and analysis

for system-of-systems (SIMVA-SoS) tool, and explains its

simulation and verification. Section V presents a case study of

SIMVA-SoS through MCI response SoS scenarios. Section VI,

discusses the threat and validity. Finally, Section VII presents

the conclusions of this study.

II. BACKGROUND: STATISTICAL MODEL CHECKING

For large and complex systems such as an SoS, exhaustive

verification methods such as traditional model checking are

inefficient in terms of its verification time and memory [9].

The state explosion problem makes it difficult to apply model

checking to a large and complex system. Statistical model

checking (SMC) is one of the statistical verification techniques

that could be an alternative to traditional model checking [9].

SMC improves the verification efficiency by inferring quantita-

tive verification results of given model’s property satisfaction

from multiple simulation results of the model. Rather than

exploring all possible states of the model, SMC repeats the

simulation until a reliable verification result is obtained based

on the statistical analysis of the simulation results. In addition,

SMC can be applied to black-box or non-deterministic systems

if we can acquire the simulation results of the system. SoS

models may have non-deterministic behaviors or be based on

incomplete or abstracted information because of the charac-

teristics of an SoS; therefore, we can enjoy the benefits of

SMC by applying it to SoS verification. Among many SMC

algorithms, we use the sequential probability ratio test (SPRT)

in SIMVA-SoS, as explained in Section IV.

III. RELATED WORK

A. Simulation of SoS

SoS engineers have utilized simulations to effectively an-

alyze an SoS whose behavior or structure is extremely com-

plex depending on the combination of constituents [10]–[16].

Baldwin et al. modeled and simulated interacting constituents’

common goal achievement and SoS characteristics including

autonomy, belonging, connectivity, and emergence [10]. Zei-

gler et al. [11] and Mittal et al. [12] used simulations to

observe and predict the emergent behavior of an SoS. In

addition, Manzano et al. evaluated the dynamic reconfiguration

of the SoS architecture through simulation for anticipating

the consequences of architecture changes at runtime [13].

Simulations are widely used to see the achievement of the

SoS mission [14], [15]. However, an SoS may encounter un-

predictable changes in itself or in the environment at runtime.

Nonetheless, most existing simulation-based approaches, in-

cluding our previous work [16], are unable to handle dynamic

changes into the SoS because their simulation inputs, such

as SoS models and scenarios, are supposed to be fully given

before simulation execution. To extend our previous work, in

this study, we propose an interactive simulation of an SoS that

allows the injection of stimuli in SoS simulation models and

scenarios during simulation execution for analyzing the SoS

with various changes at runtime.

B. Verification of SoS

Not only observing the SoS simulation but also system-

atically verifying SoS models are effective ways to verify

the properties that the SoS should satisfy [1]. Calinescu et
al. verified the utility of SoS policies for multi-objective

optimization [17]. Michael et al. verified the quality of the

SoS architecture to meet (non-)functional requirements [18].

Sindiy et al. proposed a methodology for SoS verification

and applied it to a space exploration SoS, with the decision-

making spaces consisting of the verification process and ac-

tivities [19]. Lim et al. [7] and Lomuscio et al. [8] verified

goal achievement by the cooperation of multiple agents with

their own goals and capabilities. Exhaustive verification of

an SoS model, such as the model checking that was widely

used in the above-mentioned studies, is powerful; however,

it suffers from the execution complexity caused by the state

explosion problem [9]. Our research group has proposed SMC

approaches, known as an efficient alternative to the exhaustive

model checking techniques, that use SoS simulation results to

minimize the verification cost [2], [3]. In this study, we applied

SMC to interactive SoS simulation. Further, we have made the

implemented tool available to the SoS research community.

IV. SIMVA-SOS

This section discusses the architecture and structure of

SIMVA-SoS1. Fig. 1 shows the whole architecture of SIMVA-

SoS. SIMVA-SoS can be divided into two modules: SIMVA-

SoS simulator and SIMVA-SoS verifier. The SIMVA-SoS sim-

ulator has three inputs: SoS model, default scenario, and stim-

ulus. The first two inputs must be defined before running the

simulation, and the last input can be defined before or during

the simulation. The SIMVA-SoS simulator has a user interface

for interactive simulation. Interactive simulation allows users

to modify the model or scenario through the injection of

a stimulus during the simulation. If the model or scenario

is changed through the interactive simulator, these changes

are reflected in the simulation. At the end of the simulation,

the execution results, that is, the logs of the simulation, are

saved in a storage device. After the simulation, the verification

process is executed. For the verification, a verification property

must be defined in advance. We defined abstract verification

property classes for various types of verification properties

that can be used in diverse domains. During verification, the

statistical verification algorithm runs and the verification result

is produced.

A. Interactive Simulator for SoS

To reflect the characteristics, we implement the interactive

simulator based on the structure of discrete-time and multi-

agent simulation.

A discrete-time simulation structure is used to reflect evolu-

tionary development in the simulator. The interactive simulator

1https://github.com/sumin0407/SoS-simulation-engine
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Fig. 1. Architecture of SIMVA-SoS

enables users to inject new scenario events during the simula-

tion. The discrete-time simulation structure, which updates all

system states in all discrete times, allows the user to inject new

scenario events during the simulation. We applied discrete-

time simulation to the SoS simulation, resulting in a structure

that updates the state of every CS at every tick.

An SoS contains many individual components with different

behavior; therefore, it is better to focus on the activated com-

ponent of the system [6]. A multi-agent simulation structure is

used to represent a complex system consisting of several com-

ponents with many different kinds of behavior. By focusing on

the agents, it reduces the modeling complexity of the system

by abstraction. Therefore, a multi-agent simulation structure

is appropriate for reflecting characteristics such as managerial

independence, operational independence, and emergent behav-

ior. For these reasons, we implement an interactive simulator

based on a discrete-time and multi-agent simulation structure.

Fig. 2 shows the workflow of the interactive simulator from

the user’s perspective and the simulation engine’s perspective.

In the user’s perspective in Fig. 2, the user sets up the

simulation scenario, simulation policy, and simulation con-

figuration before running the simulation. After running the

simulation, the user can interrupt the simulation at any time

during the simulation. When the user interrupts the simulation,

the simulation stops while maintaining the current simulation

state. Then, the user can inject a new scenario event. The

user can resume the simulation after injecting scenario events.

When the simulation is resumed, the simulation continues

from the point where the simulation was stopped. The user

can observe the injected scenario event and progress of the

simulation through the GUI. After the simulation is finished,

the user can analyze the simulation results.

In the simulation engine’s perspective in Fig. 2, the sim-

ulation scenario, policy, and configuration are reflected into

the simulation. When the simulation runs, scenario events that

have been defined by the user are updated in the simulation

engine. Further, scenario events that are injected by the user

during the simulation are updated in the simulation engine

when the user resumes the simulation. After updating the sce-

nario events, the simulation engine increments the simulation

time by one tick. Here, a tick is the logical execution time of

the simulation. The simulation engine executes scenario events

that need to be executed through logic time. For example,

suppose we have a scenario event where we add one firefighter

Fig. 2. Workflow of interactive simulation

at 30 ticks. If the logical time of the simulation increases

from 29 ticks to 30 ticks, the scenario event is triggered

at this point. In other words, one firefighter is added to

the simulation. The process of this loop repeats until the

simulation is finished. When the simulation is finished, the

simulation engine stores all scenario events applied to the

simulation. In addition, simulation logs and result reports are

generated for the simulation.

B. Statistical Verification for SoS

An SoS has non-deterministic characteristics such as an

evolutionary development and emergent behavior that produce

non-deterministic simulation results even for the same scenar-

ios. One of the ways to verify non-deterministic systems is us-

ing SMC. In SMC, hypothesis testing is used to determine the

satisfaction of verification properties. Several statistical verifi-

cation techniques use hypothesis testing, including Gauss-CI,

Chernoff-CI, SPRT, and Azuma.

For the statistical verification of the SoS, the results of

repeated simulations are used as sample data, and the prob-

ability of satisfying the verification property in the SoS is
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TABLE I
TYPES OF VERIFICATION PROPERTY

Verification Properties Description Example (MCIR-SoS)
Absence Globally, it is never the case that P holds with a probability < p Rescue - Transfer < 0 % should not occur

Universality Globally, it is always the case that P holds with a probability ≥ p 0% ≤ Rescue ≤ 100% must always be satisfied

Existence Globally, P holds eventually with a probability ≥ p Rescue > X% should occur

Bounded Existence Globally, P holds in specific time t with a probability ≥ p CS should be dispatched within 10 ticks

Transient State Probability Globally, P holds after t ticks with a probability ≥ p Rescue ≥ X% for (T-t) time is greater than Y%

Steady State Probability Globally, P holds in the long run with a probability ≥ p Rescue ≥ X% for a long time is greater than Y%

Minimum Duration Globally, state X holds at least Y duration with a probability ≥ p Activity rate of CS is at least X% for at least Y time

Maximum Duration Globally, state X holds at most Y duration with a probability ≥ p Rescue = 0% duration for maximum time Y

Recurrence Globally, state X should occur repeatedly at Y time intervals with a probability ≥ p Repeat the X state within Y hours

Precedence Globally, state X must occur before state Y with a probability ≥ p Transfer must occur before Rescue

Response Globally, if state X occurs, it must occur before state Y with a probability ≥ p First aid occurs prior to patient transfer

Until Globally, state X must be maintained until state Y occurs with a probability ≥ p If all the patients are not rescued, continue the rescue

estimated through statistical analysis. We use SPRT because it

is an efficient verification technique based on hypothesis test-

ing [20]. SPRT automatically calculates the number of sample

data required for verification under statistical judgement and

provides high verification speed by minimizing the number of

samples. The SPRT algorithm is shown below in Algorithm 1.

The verification property and verification configuration such

as type 1 error, type 2 error, and threshold must be given as

inputs. The verifier checks the condition with the number of

true, number of samples, and verification configuration to run

more simulation for statistical verification. If the condition is

true, it runs the simulation and store the result (trace). The

result is checked through the trace and verification property,

and the number of true is incremented by one if the result

is true. Then, the number of samples is incremented by one.

This process is repeated until the condition is false. Finally,

the algorithm presents the verification result.

Algorithm 1 SPRT Algorithm for Verification

1: Input: verification property & verification configuration
2: while Condition(numOfTrue, numOfSample, config)

3: trace = simulation.run()
4: if property.check(trace, property) == true then
5: numOfTrue + 1

6: end if
7: numOfSample + 1

8: end while
9: result = satisfied(numOfSample, numOfTrue, config)

10: return result;

The SIMVA-SoS verifier supports verification for 12 veri-

fication properties. Table 1 provides a detailed description of

the verification properties. The probability value p in the table

is the result of the statistical verification. For example, if we

want to verify an example of the Existence property, ’Rescue

≥ 50% of patients’, the verification result gives the probability

p that the property will be met.

V. CASE STUDY

A. Research Question

Some simulations are partially dynamic; however, most

simulators do not allow the injection of new stimuli during

the simulation. Most simulators that can inject a new stimulus

while the simulation is in progress do not provide verification

techniques. The purpose of the case study is to verify that

interactive simulation and verification are working properly.

We consider the following research questions:

• RQ1: Does the interactive simulator allow modifying the

scenarios at runtime?

• RQ2: Does the verification function provide proper veri-

fication results based on the simulation results?

RQ1 is intended to examine whether the interactive simu-

lator can express the evolutionary development characteristic.

Specifically, it checks whether the scenario can be modified

at simulation runtime. RQ2 examines whether the verification

through simulation results works normally. In the case study,

several scenarios are used to identify changes in the verifica-

tion results.

B. MCIR-SoS Scenario

A Mass Casualty Incident (MCI) is an incident that over-

whelms the ability of emergency services to provide appro-

priate services to patients, due to the number of victims

and the severity of their injuries [21]. We follow the MCI

Response System-of-Systems (MCIR-SoS) scenario [16] for

the case study. In short, the MCIR-SoS scenario consists

of four CSs: firefighter, safe zone, ambulance, and hospital.

Further, emergency manager gives commands to the CSs.

Fig. 3 shows a schematic diagram of MCIR-SoS scenario.

In our previous work et al. [16], we defined eight types of

stimuli and five types of injection techniques for MCIR-SoS.

Fig. 3. Schematic diagram of MCIR-SoS scenario
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TABLE II
MCIR-SOS SCENARIOS

Scenario Speed Sight Communi- Add Remove
types range cation CS CS

Baseline ↓ ↓ ↓ ↓ Delay ↑ ↑
Scenario 1 ↓ ↓ Normality ↑ ↑ ↑
Scenario 2 ↓ ↓ ↓ ↓ ↓ ↓ Loss ↑ ↓

The stimuli were defined by analyzing the MCI reports and

identified issues. In addition, five types of injection techniques

were proposed for dynamic simulation. We use these stimuli

and injection techniques for injecting new scenarios at runtime

through interactive simulations. In this study, to examine RQ1

and RQ2, three MCIR-SoS scenarios were used. Table II

shows how the stimuli were applied to the three scenarios.

In scenarios 1 and 2, additional stimuli are applied to the

baseline scenario. The larger the number of arrows, the larger

the number of stimuli are injected. The configuration such

as initial number of CSs and total simulation time of the

simulation is the same in all three scenarios.

C. Results and Analysis

1) RQ1: Does the interactive simulator allow modifying
the scenarios at runtime?: Evolutionary development, which

represents the continuous evolution of the SoS, is one of the

most important characteristics of the SoS. To represent the SoS

through simulation, the simulation should be able to express

evolutionary development. In other words, the user should be

able to inject new scenario events at runtime. Five different

types of stimuli were injected into the simulation to answer

RQ1. All stimuli were applied to firefighters or ambulances.

Fig 4 shows the simulation results for three scenarios with

various stimuli injected at runtime.

The left-hand side of the figure represents the changes in the

number of firefighters and ambulances in each scenario. The

line graph shows the number of firefighters and the bar graph

shows the number of ambulances. The number of firefighters

and ambulances is represented by the left- and right-hand-side

y-axes, respectively. After 300 ticks, the number of firefighters

and ambulances changed because CS addition and removal

stimuli were injected in scenario 1 and 2.

Fig. 4. Result of the interactive simulation

Communication stimuli were applied from 200 to 400 ticks.

In the baseline scenario, the communication was delayed

at around 75 ticks, and in scenario 2, communication loss

occurred. In scenario 1, no communication problem occurred.

The right-hand side of the figure shows the number of com-

munications received for each tick; these features are well

represented.

Fig 4 indicates that the various stimuli injected at runtime

are well applied into the simulation. In conclusion, the user can

inject new scenario events at runtime through the interactive

simulation, and the interactive simulator was able to express

evolutionary development.

2) Does the verification function provide proper verification
results based on the simulation results?: After the simulation,

SIMVA-SoS start the verification using the same scenarios.

SIMVA-SoS use the SPRT algorithm for the statistical ver-

ification described in algorithm 1. To verify each scenario,

the SPRT runs tens of thousands of simulations. For all three

scenarios, the existence property is used as the verification

property. The existence property performs a verification on

the probability that more than 50% of the patients are rescued

during the simulation. Fig 5 shows the verification result using

the existence verification property. The probability, represented

on the y-axis, is the ratio of numOfTrue shown in algorithm 1.

The probability can be calculated as numOfTrue / numOfSam-
ple. Verification with SPRT is calculated using the number of

samples, number of true, and threshold value. As a result, it

returns true if the value of probability is greater than the value

of theta, and false if it is small.

The verification result of the baseline scenario, scenario 1,

and scenario 2 shows 54%, 68%, and 32% probabilities of

rescuing more than 50% of patients. These results confirm

that the probability increases in the order of scenario 2 <
baseline scenario < scenario 1. We confirmed that the best

verification results were obtained in scenario 1 in which the

most appropriate stimuli were injected for the rescue. In

other words, different verification results are obtained for each

scenario, and a good scenario shows a good verification result.

In conclusion, statistical verification through simulation results

can be seen to provide proper verification results.

Fig. 5. Result of verification
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VI. THREATS TO VALIDITY

The main threat to validity is the applied scenarios. The MCI

scenario we applied extracted information from the actual MCI

report; however, it was impossible to obtain all the information

from the MCI report. Further, it is not easy to accurately

match the logical time of the simulation with the real-time

of the real world. However, this study focuses on whether the

SoS characteristics can be expressed through simulation and

whether the common goal of SoS can be verified through the

simulation-based statistical verification. In addition, the case

study results confirmed the possibility of a simulation-based

verification technique.

VII. CONCLUSION

This study develops SIMVA-SoS, a tool for the simulation

based verification and analysis for system of systems. SIMVA-

SoS consists of two parts: simulation and verification. SIMVA-

SoS supports interactive simulations that enable injecting

dynamic changes into the SoS. This enables modifying the SoS

model and scenario at runtime. In addition, SIMVA-SoS has an

SMC engine for the efficient verification of a non-deterministic

SoS model. It provides quantitative verification results based

on the statistical analysis of simulation results without the state

explosion problem. We showed the applicability of our tool

to the MCIR-SoS case study. A user could inject a stimulus

to the MCIR-SoS during simulation execution to represent

unexpected changes and quantitative verification results of the

goal satisfaction of the SoS were obtained. SIMVA-SoS is an

open source tool; therefore, the SoS engineering community

can use it as intended or extend it.

The input model of SIMVA-SoS should be implemented

manually based on the SIMVA-SoS abstract classes. In future

work, we aim to develop a graphical SoS modeling tool that

will support the automatic generation of an SoS simulation

model for SIMVA-SoS. The simulator of SIMVA-SoS cur-

rently shows evolving through the change in the number of

instances. We will improve the SIMVA-SoS simulator to apply

various changes such as adding new CS and changing interac-

tions. SIMVA-SoS will be applied to other SoS domains, such

as traffic control or energy management SoS.
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