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Abstract—A system of systems (SoS) is comprised of con-
stituent systems that interact with each other to achieve a com-
mon goal. An SoS operates in an environment with dynamically
changing external conditions. Therefore, supporting the resilience
of the SoS is crucial to sustain goal achievement at run-time.
One way to support this resilience is to generate an adaptation
strategy at run-time that guides the dynamic reconfiguration of
the SoS. Therefore, adaptation strategies should be effectively
generated within a reasonable time at run-time to conduct the
dynamic reconfiguration in time. To satisfy this requirement, we
propose an adaptation strategy generation approach that consists
of two phases. 1) At design time, our approach constructs a
knowledge base that contains adaptation strategies for expected
environmental conditions. 2) At/during run-time, it generates
adaptation strategies by utilizing the knowledge base. Through a
case study, we show that our approach can generate adaptation
strategies effectively at run-time.

Keywords—System of Systems (SoS), Self-Adaptation, Adapta-
tion strategy, Multi-objective optimization (MOO)

I. INTRODUCTION

Recently, interests in analyzing the behaviors of a system-
of-systems (SoS) has been growing because of the increasing
complexity of modern systems. An SoS is a goal-oriented
system comprised of multiple Constituent Systems (CSs), that
have autonomy and independence, and interact with each other
to achieve a higher-level common goal [1].

As with other software-intensive systems, supporting the
resilience of an SoS is one of the major concerns for SoS
engineers trying to effectively deal with dynamic environ-
mental condition changes. Considering the resilience of the
SoS, Nielsen et al. [1] defines one key dimension of the SoS,
which is that an SoS autonomously conducts dynamic recon-
figuration by changing its configuration to adapt to external
environmental condition changes at run-time. Therefore, SoS
managers must be able to guide the dynamic reconfiguration
of the SoS to maintain its goal achievement by adapting
to environmental condition changes. One promising way to
guide the dynamic reconfiguration is to provide the SoS with
adaptation strategies that prescribe how the SoS conducts the
dynamic reconfiguration.

To generate adaptation strategies at run-time, there are two
important requirements that should be considered. First, the
generation process should take a reasonable time to have an
SoS reconfigure in time. Second, the generated adaptation
strategy should be able to properly guide the SoS to an

optimal configuration that maximizes the probability of goal
achievement. However, there must be a trade-off between
these two requirements because the more time is invested in
the generation process, the easier it is to achieve the quality
requirement.

In conventional approaches, a system developer or a domain
expert manually defines adaptation strategies at system design
time by predicting the environmental changes of a target
system’s run-time [2]. However, since predicting all kinds and
varieties of environmental changes at run-time is impossible,
predefined adaptation strategies would lead to the degradation
of system performance when a discrepancy exists between
knowledge before the run-time and actual occurrences of run-
time events.

To address these concerns and properly reconfigure an SoS
according to dynamic changes in environmental conditions, ex-
isting studies have proposed to generate an optimal adaptation
strategy at run-time [3], [4]. These approaches select a target
system as a formal model and generate an optimal adaptation
strategy through exhaustive searching using a model checker.
However, these approaches impose major computational costs
at run-time. Accordingly, they can only satisfy the quality
requirement.

To generate effective adaptation strategies within a reason-
able time, Coker et al. [5] first applied a stochastic search
algorithm and demonstrated its applicability to the adaptation
strategy generation problem. However, because the stochastic
search algorithm also suffers from conflicting requirements,
the convergence speed of the search algorithm must also be
improved to generate the adaptation strategy promptly.

To satisfy both objectives, this study utilizes previously
known adaptation strategies that were (sub)optimally con-
structed based on past environmental conditions. This ap-
proach then performs strategy generation during run-time by
improving the convergence speed of the stochastic search
algorithm. Previously discovered solutions could be an ap-
propriate starting point for searching for optimal strategies
to adapt to run-time environmental conditions. A key idea
is to construct a knowledge base that contains adaptation
strategies for expected environmental conditions at design time
and then utilizes the knowledge and predefined strategies in
the knowledge base to facilitate the generation of adaptation
strategies during run-time.
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Fig. 1: Overall Approach

The contributions of this study are summarized as follows:
• We propose a dynamic adaptation strategy generation ap-

proach at run-time followed by constructing a knowledge
base at design time.

• Through a case study, we show that the proposed ap-
proach can generate adaptation strategies effectively at
run-time.

II. RELATED WORK

Over the last two decades, many approaches have been
proposed to support the resilience of systems in the autonomic
computing domain. In conventional approaches, systems adapt
to environmental condition changes by following adaptation
strategies manually defined by system developers at design
time [2], [6]. Common limitations of these approaches are
that the systems can only adapt to stationary environmental
condition changes, which can be foreseen. Furthermore, they
require painstaking and time-consuming processes for system
engineers to define the adaptation strategies.

To address this concern and make systems adapt to un-
expected environmental condition changes, many approaches
generating an adaptation strategy at run-time have been pro-
posed. In approaches based on probabilistic model checking
[3], [4], the general process is to express a target system as a
formal model containing under-specified adaptation decisions
and then get an optimal strategy (sequence of adaptation deci-
sions) through an exhaustive search of the probabilistic model
checker. The main limitation of these approaches is that they
take a long time to generate an adaptation strategy because
of the exhaustive search of probabilistic model checking at
run-time.

Coker et al. first applied a stochastic search algorithm to
generate adaptation strategies at run-time [5]. Their search
algorithm finds well-established adaptation strategies in a
reasonable time by balancing exploration and exploitation for
a search space during the search process. Like this work,
our approach also uses a stochastic search algorithm with a
seeding mechanism that utilizes previously known solutions
to support an efficient convergence. Kinneer et al. applied
a seeding technique to generate adaptation strategies [7].
To support the efficient generation of strategies, the seeding

approach generates an initial population based on previously
known solutions instead of randomly initializing the initial
population, and it facilitates the convergence speed of the
stochastic search algorithm. They showed that utilization of
previously known adaptation strategies and knowledge can
generate more effective adaptation strategies than generating
them from scratch. When applying the seeding technique, the
main concern is now how to generate adequate seeds for
an initial population. However, the authors made seeds by
heuristically processing past solutions, with an assumption that
past solutions already existed. Accordingly, it is difficult to
directly apply this approach to other systems if it is difficult
to get proper initial seeds. Our approach differs in that it
automatically constructs a knowledge base containing good
seeds for expected environmental conditions at design time,
and it enables retrieval of the seeds from the knowledge base
at run-time.

III. APPROACH

A. Overall Approach

Fig. 1 describes an overview of the proposed approach. The
approach is largely divided into two phases: 1) Construction
of an initial knowledge base at design time. 2) Generation
of adaptation strategies with the seeding at run-time. The
key idea behind generating adaptation strategies is to employ
a parametric SoS model that takes SoS configuration and
environmental conditions as parameters before the NSGAII
algorithm generates (sub)optimal adaptation strategies for a
given context.

In the first phase, the knowledge base that contains cases
is constructed. Each case generation process is as follows.
A generation manager instantiates the SoS parametric model
through a given pair of SoS configurations and environmen-
tal conditions. Thereafter, the NSGA-II in a case generator
takes the parametric SoS model and generates non-dominated
adaptation strategies. Lastly, the case generator generates the
case that contains (sub)optimal adaptation strategies in a given
context.

In the second phase, whenever the environmental condition
is changed every adaptation cycle, the adaptation strategy
generation process is triggered. The overall process is sum-
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marized as follows: 1) Monitor: A reconfiguration manager
monitors the current context. 2) Analysis: The reconfiguration
manager retrieves the most similar adaptation strategies to
the monitored context from the knowledge base. 3) Plan: An
adaptation strategy generator generates adaptation strategies
with the seeding. 4) Execute: The reconfiguration manager
executes a selected adaptation strategy on the running SoS
and stores generated adaptation strategies in the knowledge
base.

B. Input Specification

SoS Configuration and Environmental Condition
• SoS configuration (C) specifies the number of CSs in

the SoS and is defined as an integer array. Cardinality
means how many CS types exist, and each value of SoS
configuration variable (cvi) specifies the number of CSs
in the SoS model.

• Environmental condition (EC) specifies an external en-
vironmental condition and is defined as a double array.
Cardinality means how many external environmental con-
dition variables exist, and each value of environmental
condition variable (ecvi) specifies the unspecified vari-
ables (transition probability or sojourn time) of behavior
models.

SoS Parametric Model It consists of three components: 1)
a network of behavior models, 2) an adaptation action specifi-
cation, and 3) utility functions. The SoS parametric model is
simulated in a discrete-time simulation, which assumes that the
system changes only at each discrete time tick. The behavior
model is based on the PTA (Probabilistic Timed Automata)
[8] to describe the stochastic behavior of CSs and internal
environment interacting with CSs. The detailed explanation is
on the this link1.

Fig. 2: Dynamic reconfiguration

Adaptation strategy is a sequence of adaptation actions
that is expressed as an integer array. Adaptation action is a
primitive reconfiguration action that adds or removes one of
the CSs from the SoS while taking the time. Each integer value
denotes how many CSs are added or removed from the same
index of the SoS configuration. Fig. 2 describes an example
where an SoS configuration {1, 1, 1} is reconfigured to {3, 4,
4} by executing an adaptation strategy expressed as {2, 3, 3}.

1https://github.com/SungJin1212/AdaptationStrategyGenerator

For the evaluation, the simulator simulates the SoS model
and the adaptation strategy concurrently for a predefined adap-
tation cycle. Through the simulation, the adaptation strategy
latency and values specifying an SoS level goal achievement
defined in the SoS model are calculated.

The utility function maps the objective value defined in
the SoS parametric model to the utility function value. The
quality of the generated adaptation strategy is evaluated by
the weighted-sum of the utility function values.

C. Phase1: Knowledge base Construction at Design time

Fig. 3: Case generation process example

For each pair of SoS configurations and environmental
conditions, the case generation process is summarized as fol-
lows. 1) The parametric SoS model is instantiated by the SoS
configuration and environmental condition. 2) Non-dominated
adaptation strategies are generated through the NSGA-II. 3)
Each case is generated and added to the knowledge base by
the case generator.

Fig. 3 illustrates an example of the case generation process.
The SoS model has two CS types and two unspecified vari-
ables. An ecv1 specifies the probability of the transition, and
an ecv2 specifies the sojourn time of the state. Once the SoS
model is instantiated, it will have two CSs for each CS type
and unspecified variables are specified according to the C and
EC, respectively. The NSGA-II then takes the SoS model and
generates adaptation strategies. Lastly, the case is generated
and stored in the knowledge base.

D. Phase2: Adaptation Strategies Generation at Run-time

Analysis: Retrieve a Most Similar Case

Fig. 4: Retrieve procedure

The retrieve process is summarized as follows. 1) For all
SoS configurations in the knowledge base, the most simi-
lar configuration with a minimal Euclidean distance for a
sensed SoS configuration is retrieved. 2) For all environmental
conditions with the same SoS configuration as the retrieved
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SoS configuration, the most similar environmental condition
with a minimal Euclidean distance for a sensed environmental
condition is retrieved. 3) A case that has retrieved an SoS
configuration and an environmental condition is retrieved, and
adaptation strategies that will be seeds in the planning step are
then extracted in the retrieved case.

Fig. 4 describes an example. If a Cn is the most similar SoS
configuration, and an ECn1 is the most similar environmental
condition, then the case that has Cn and ECn1 is retrieved.

Planning: Generate Adaptation Strategies with Seeding

Fig. 5: Process of generating adaptation strategies at run-time

Fig. 5 illustrates a process of generating adaptation strate-
gies. In the adaptation strategy generator, once the SoS model
reflecting the sensed context has been instantiated, the search
algorithm sets an initial population as retrieved adaptation
strategies with randomly generated adaptation strategies be-
cause the results of past research that uses seeding in other
domains show that using the whole previous solution could
be inferior to starting from scratch [9]. If the size of adapta-
tion strategies is less than the number of seeds, then whole
adaptation strategies are set to seeds because the number of
Pareto-fronts could be less than the seed size. Once adaptation
strategies are generated, one of the adaptation strategies with
the maximal utility value is selected and executed.

IV. CASE STUDY

A. MCIResponse SoS

Mass casualty incident (MCI) refers to large-scale incidents
emerging in a relatively large number of patients with injuries
[10]. MCI response processes typically require multiple col-
laborative responders to save patients as much as possible.
Accordingly, an MCIResponse SoS (MCIR SoS) is composed
of autonomous responders (CSs) contribute to an SoS level
goal (save patients) by collaborating with one another. When
the MCI occurs and is reported, the MCIRSoS assesses the
situation and dispatches responders to rescue and save patients.
In this scenario, we assume that the MCI is caused by a
tsunami emerging, with the patients both at sea and on the
ground, and the tsunami occurring continuously for every
adaptation cycle. In one adaptation cycle, 500 patients emerge
at sea and on the ground, respectively. The reconfiguration
problem in this scenario is that the MCIRSoS should decide
how many responders to add or remove from the MCI scene
when the environmental condition influencing rescue or save

activities is changed. If the environmental condition worsens,
then the MCIRSoS has to dispatch more CSs at the MCI
scene. On the contrary, removing CSs from the MCI scene is
necessary when environmental conditions get better because
CSs consume operational costs for each tick.

B. MCIRSoS Configuration and Environmental Condition

There are three CS types in the MCIRSoS: a firefighter CS,
a helicopter CS, and an ambulance CS. The main role of the
firefighter CS and helicopter CS is to rescue the patients on the
ground and in the sea, respectively. The role of the ambulance
CS is to transfer rescued patients to the hospital. We assume
that all CSs can be dispatched to the MCI scene by up to 50.
The detailed models are on the this link1.

TABLE I: Environmental Condition Specification
Variable Influence Interval Min Max

ecv1: WeatherCondition Probability of
searching patients 0.2 0.1 0.7

ecv2: RoadCondition Transfer time 2 1 7

Table I shows the environmental condition values. The
RoadCondition influences the patient transfer time of the
ambulance CS. Accordingly, if the RoadCondition worsens,
the MCIR-SoS should dispatch the ambulance CS addition-
ally. The WeatherCondition influences the patient searching
probability of the firefighter and helicopter CS. If the Weath-
erCondition worsens, the MCIR-SoS should dispatch the fire-
fighter and helicopter CS additionally. In this scenario, there
are 16 environmental condition states, and the environmental
condition state is randomly changed with the same probability
for every adaptation cycle.

Fig. 6: Utility functions

C. Utility Functions and NSGA-II Specification

TABLE II: Adaptation Strategy Objective Variables

Objective variable Calculation method
Number of saved patients Count saved patients
Operational cost Sum of operational cost of dispatched CSs
Latency Sum of latency of adaptation actions

The adaptation strategy has three objectives. Table II shows
the calculation methods for each objective value. The search
algorithm has three objectives: maximize the Number of saved
patients, minimize the Latency, and minimize the Operational
cost. Fig. 6 contains functions mapping objective values onto
the utility function value.
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In the MCIRSoS, we calculate the utility value by the
weighted-sum of utility function values, as follows:

UV =
N∑

i=1

wi × UFVi

where UV is the utility value of the adaptation strategy, wi

is the weight of the ith objective, UFVi is the utility function
value of the ith objective, and N is the number of objectives.
We set the weight of the Number of saved patients to 0.6, the
Operational cost to 0.3, and Latency to 0.1.

TABLE III: NSGA-II Specification
NSGA-II Parameter Parameter Value
Population Size 20
Seed Size 10
Generation at design time 10
Generation at run time 3
Crossover / Rate Uniform Crossover / 0.9
Mutation / Rate Uniform Mutation / 0.1

Table III contains the parameter specifications of the NSGA-
II search algorithm. We set the seed size as 10 because other
domain studies that use the seeding methodology results show
that 50% to 60% of the population size is the best [11]. The
other parameter values are chosen by a parameter sweep.

V. EVALUATION

A. Experimental Setup

We implement the NSGA-II using a MOEA framework
[12], which provides well-known multi objective optimization
search algorithms. The experimental environment includes
Windows 10 Pro (64-bit) PC with Intel Core i7-7700 3.60GHz
processor and 16GB memory.

We define a # of discrete points (NDP) which specifies
the number of partitions for each SoS configuration value.
We conduct the experiment with various NDP because the
performance of our approach depends on how many SoS
configurations are stored. The more SoS configurations are
stored in the initial knowledge base at design time, the higher
the probability of getting a similar case to the sensed context.
Therefore, the higher the NDP used, the better the quality of
the retrieved adaptation strategies serving as seeds. If the NDP
is 2, then 8 SoS configurations are stored in the knowledge
base (C1:(25, 25, 25), C2:(25, 25, 50) ... C8:(50, 50, 50)).

TABLE IV: Experiment Setup
Parameter name Value
Adaptation cycle 150 ticks
Simulation time 3000 ticks
Running SoS initial configuration (10, 10, 10)
Expected environmental conditions (0.3, 3), (0.5, 5)

Table IV contains information on the experimental setup.
We simulate 20 adaptation cycles to ensure that all the
environmental conditions are covered at least once. We set an
initial SoS configuration to (10, 10, 10), which means there
are 10 firefighters, 10 helicopters, and 10 ambulances initially.

We assume two environmental condition states are expected
at design time.

B. Evaluation

RQ1. Can our approach guide the dynamic reconfiguration
effectively at run-time?

We use the NoSeed term to denote an approach that ran-
domly initializes an initial population for each adaptation
cycle and compare it with the our approach. We conduct
experiments from a small NDP (2) to a large (10) one to
show that our approach can effectively guide the dynamic
reconfiguration regardless of the NDP. For evaluation of the
RQ1, we concurrently run the NoSeed. Our approach under the
same environmental condition changes during 20 adaptation
cycles for each NDP setting, and we then report a sum of
utility values of selected adaptation strategies for 20 adaptation
cycles. We report the average values of the experimental results
for 30 runs to assure the generality of the experimental results.
We also perform the Wilcoxon signed-rank test to a pair of the
sum of utility values for each NDP setting to show whether
a statistically significant difference exists. If a p-value is less
than 0.05, then there is a statistically significant difference
between the two samples.

TABLE V: Sum of utility values of selected adaptation strate-
gies for small (2), medium (5), and large (10) NDP and p-
values.

NDP Approach Sum of utility values p-value

2 OurApproach 1598.06
< 0.01NoSeed 1576.39

5 OurApproach 1591.40
< 0.01NoSeed 1568.24

10 OurApproach 1594.81
< 0.01NoSeed 1574

Table V contains the sums of utility values and p-values.
The sum of utility values in our approach is better than
that of the NoSeed approach for all NDP cases, and all
the p-values are less than 0.01. Therefore, the adaptation
strategies generated by our approach can effectively guide the
dynamic reconfiguration better than the approach generating
adaptation strategies from scratch.

RQ2. Is investing more computational time to construct
an initial knowledge base at design time meaningful?

To evaluate the RQ2, we conduct experiments for various
NDP settings under the same environmental condition changes
for 20 adaptation cycles. We calculate the sum of utility
values and the p-value to show that a statistically significant
difference exists.

Table VI contains the p-value for the smallest NDP setting
(2) versus the various NDP settings and the initial knowledge
base construction time. When the NDPs are 4 and 6, there is
no significant difference for the sums of utility values. In the
case of NDP 8, we can observe a weak significant difference
(p-value < 0.1). In the case of the NDP 10, we can observe a
significant difference between the cases with 10 and 25 cases.
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TABLE VI: p-value for the sums of utility values for the
smallest (2) versus the sums of utility values for various NDP

NDP Sum of utility values p-value Construction time
2 1588.50 None 3 min.
4 1595.71 0.165 21 min.
6 1597.95 0.404 65 min.
8 1597.64 0.078 176 min.

10 1600.79 0.031 305 min.
12 1598.98 0.106 594 min.

This is because the more SoS configurations are stored at
design time by consuming more computation time, the higher
the chance of retrieving adaptation strategies whose context
information is similar to the current context. However, there
is no significant difference in the case of NDP 12. This is
because a more similar case could be retrieved when we use
a low NDP, given that a high NDP might not include the
configuration of a low NDP. Therefore, an optimal NDP value
must be found to improve the quality of the adaptation strategy.

We can thus conclude that investing computation time
to construct a knowledge base is meaningful because not
only is there a significant difference, but consuming lots of
computation time at design time is also affordable.

VI. DISCUSSION

Discussion of the Scalability The insight of this approach
is to take a run-time overhead at design time because a design-
time overhead is affordable compared to a run-time overhead.
However, if too much time has to be spent to construct the
initial knowledge base, then the timing of a system launch
could also be delayed. In our computing resources, it took 3
min. for the case where the NDP was 2 and 594 min. for the
case where the NDP was 12. However, because a large NDP
does not always mean a better result, finding a suitable NDP
value in the target SoS is necessary.

Limitations Some limitations exist in our approach. First,
the scenario used in this study is hypothetical. Even if we
generate this scenario by referring to many MCI documents,
many real situations or cases could have been abbreviated.
Even if we have no choice but to use the hypothetical
scenario because there is no benchmark SoS, a more detailed
scenario is still necessary. Second, we not only used one
search algorithm, but we also adjusted the parameters by trying
one by one within the frequently used parameters in other
papers. Nonetheless, there might be better search algorithms
and parameter values. In other words, to further improve the
quality of adaptation strategies, additional experiments with
various search algorithms are necessary.

VII. CONCLUSION

As the SoS will be deployed in an environment where
external environmental conditions dynamically change, it is
important to support the dynamic reconfiguration of the SoS
to have the SoS sustain its goal achievement by adapting
environmental changes. To facilitate adaptation strategy gen-
eration process at run-time, we used the seeding methodology

that initializes the initial population of the stochastic search
algorithm as previously known solutions. The SoS manager
could utilize generated adaptation strategies when dynamic
reconfiguration is necessary. Through experimental results,
we demonstrated that our approach can generate effective
adaptation strategies at run-time better than the approach that
does not use the knowledge base. The generated adaptation
strategies could help the SoS manager to guide the dynamic
reconfiguration. In the future, we are planning to apply the
proposed approach to other SoS to generalize our results.
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